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Abstract

A design of methodology for experimental identification of nonlinear dynamical systems
using feed-forward MLP neural networks as dynamical neural models is presented in this
paper. The proposed methodology consists of four modules and makes use of already
existing models of the nonlinear dynamical system. The methodology is verified in the
case study, which is dedicated to the experimental identification of the modified helicopter
educational plant CE 150 from Humusoft company. The previously created gray-box
model of the helicopter educational model is used to estimate optimal neural network
structure. The obtained black-box helicopter model, represented by a dynamical neural
model, captures interactions between elevation and azimuth subsystems. The dynamical
neural model is used to design three control algorithms without subsystem decoupling that
are verified in the simulation environment and on the real helicopter educational model.

Keywords: dynamical neural models; experimental identification methodology; black-box
model; digital control; helicopter educational model

1. Introduction
The CE 150 educational helicopter model shown in Figure 1 represents a benchmark

system often used in nonlinear dynamical system identification. It is a nonlinear dynam-
ical system with two degrees of freedom—elevation and azimuth angle. The helicopter
educational model consists of five subsystems, main and tail rotor, elevation, azimuth,
and balancing weight, which allows for adjusting the center of gravity of the elevation
subsystem [1]. Interactions between elevation and azimuth subsystems, unstable and rela-
tively fast dynamics, and a MIMO system make identification of the educational helicopter
model challenging. The model is also considered as a benchmark system, as it covers a
wide variety of real system dynamics. Experiences and skills gained from modeling and
controlling the educational helicopter model find practical applications, for example, in
autonomous flying drone control.

Modeling of the education helicopter model was previously performed using analyt-
ical or experimental identification. Parameters of the analytically derived mathematical
model were fitted using genetic algorithms [2], the Nelder–Mead method [3], or the non-
linear least squares method [4]. Mathematical modeling was completely omitted in [5],
where the authors used a set of linear regression models to approximate the dynamics of
the helicopter educational model. An MLP neural network was used by the authors in [6].
The resulting black-box model of the helicopter educational model was validated indirectly
using a PID control algorithm. Different controller types have been used to stabilize and
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control a helicopter educational model. The mathematical model of the helicopter edu-
cational plant was linearized in multiple operating points in [7] to design a set of robust
control algorithms with smooth transitions between them. An experimentally tuned fuzzy
control algorithm was used in [2] to control elevation and azimuth subsystems separately.
In [8], the designed fuzzy control algorithm was compared to the PID control algorithm.
Authors in [9] designed a control structure with the super-twisting sliding mode controller
in the inner loop and the composite nonlinear feedback controller in the outer loop. PID,
adaptive gain scheduling, and fuzzy control algorithms were used in [10] to gather data
to train a neural network for direct control of the helicopter educational model. In [11],
the neural network controller was trained online using a training algorithm based on the
extended Kalman filter. Authors in [12] trained an MLP neural network to approximate the
dynamics of the helicopter educational model. This network was used to train an inverse
neural network that was used directly in the control structure to track the reference signal.

Main rotor

Tail rotor

Azimuth sensor

Elevation sensor

Figure 1. CE 150 helicopter educational model from Humusoft company [1].

Different types of neural networks can be used to approximate the dynamics of a
nonlinear dynamical system. In [13], the authors used a radial basis function network
(RBFN) to capture the nonlinear dynamics of SISO systems and designed an RBFN-based
controller. Application of recurrent neural networks (RNNs) in SISO and MIMO dynamical
system identification was presented in [14]. The primary advantage of RNNs compared
to MLP networks is that system dynamics is handled internally, eliminating the need
to determine system order by hand. A black-box model of a nonlinear SISO system
based on the long-short term memory (LSTM) neural network is presented in [15]. The
authors used the obtained black-box model to design an MPC control algorithm with a
verification on the real system. In [16], the authors compared MLP, RNN, LSTM, and
GRU neural networks in a system identification task. On the selected benchmark system,
the MLP network required the least amount of resources to train while offering relatively
low prediction error. Authors in [17] utilized temporal convolutional neural networks
(TCNNs) to identify the Silverbox benchmark system and compared prediction results
with other system identification methods. Authors highlighted that TCNNs are more
suitable for systems with longer memory requirements. In this paper, the MLP neural
network is used to approximate the dynamics of the helicopter educational model. The
main reason for choosing the MLP neural network over other neural network types is the
ability to utilize instantaneous linearization. Instantaneous linearization allows the design
of computationally efficient control algorithms using classical synthesis methods, which is
presented in this paper.
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The CE 150 helicopter educational model was used in the Center of Modern Control
Techniques and Industrial Informatics (CMCT&II) at the Faculty of Electrical Engineering
and Informatics (FEEI) at the Technical University of Košice, which the authors of this
paper are part of. A model predictive control algorithm was designed in [18]. This model
predictive control algorithm was designed based on a set of experimentally identified
models, and the obtained results were evaluated graphically. The design of model predic-
tive control algorithms was generalized in [19] with an example based on the helicopter
educational model. In the dissertation thesis [20], the author was focused primarily on the
experimental identification of nonlinear dynamical systems using classical and intelligent
methods. Classical methods were used in the design of the methodology for gray-box
model identification. The proposed methodology was used in the identification of SISO sys-
tem of the aerodynamic levitation plant in [21]. Finally, the methodology was formulated
and validated on MIMO system of helicopter educational model in [4]. A methodology
for black-box model identification using neural networks alongside a case study for its
verification was also presented in the dissertation thesis [20]. This methodology and case
study together form the research basis of this paper, the aim of which is to qualitatively
compare control algorithms synthesized from the black-box model.

In Section 2, a proposed methodology for experimental identification of nonlinear
dynamical systems using the feed-forward neural network as a dynamical neural model is
presented. Here, the proposed methodology is divided into four modules with correspond-
ing description. Section 3 presents the overview of the helicopter educational model and
the verification of the proposed methodology in a case study. This case study demonstrates
Dynamic Neural Models in Experimental Identification of Helicopter Educational Model.
The validated dynamical neural model captures interactions between helicopter subsystems
and represents a digital twin of the helicopter educational model. The digital twin is used
in Section 4 to design and verify various control algorithms whose performance is verified
using the real helicopter educational model.

2. Design of Methodology for Experimental Identification Using
Feed-Forward Neural Networks

The proposed methodology is based on the methodology formulated in [4,20], where
also a gray-box model of the helicopter educational plant was created, and the general
experimental identification loop [22], which is modified to accommodate the use of MLP
(multilayer perceptron) feed-forward neural networks as dynamical neural models in
dynamics approximation. The resulting model is considered to be a black-box model of
the real system. Using traditional MLP networks instead of more modern networks like
recurrent and LSTM networks is advantageous in the availability of methods for nonlinear
controller and estimator synthesis [22]. The advantage of the proposed methodology
compared to the general experimental identification loop is that it can use an existing
model to tune the hyperparameters of the neural network. Another advantage is that data
obtained from an existing model have known noise characteristics, which is not possible
to achieve with data from the real system. The proposed methodology is illustrated
in Figure 2.

The proposed methodology consists of four modules: Data acquisition, Hyperparameter
tuning, Neural network training, and Model validation. Each module is further divided into
submodules as necessary. The Data acquisition module is used to obtain and process data
from the real system. It consists of the following submodules:

A1. Gray-box model as data generator—a gray-box model of the identified system (if it exists)
is used to obtain data for neural network training;
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A2. Experiment design—a series of experiments is designed to obtain experimental data
from the real system;
A3. Data collection—multiple realizations of designed experiments are performed, and data
from the real system are recorded with a selected sampling period;
A4. Data preprocessing—recorded data are preprocessed to reduce noise, normalize data,
and create training and testing datasets.

C1. Training algorithm selection
C2. Pretraining on generator data
C3. Training on data from real system

Neural network training

D1. N-step ahead prediction validation

Model validation

A1. Gray-box model as data generator
A2. Experiment design
A3. Data collection
A4. Data preprocessing

Data acquisition

B1. Estimation of layers and neuron counts

Hyperparameter tuning

Methodology for NDS identification using NN

Design and verification of control algorithm

−

+

Model
acceptance

Figure 2. Methodology for experimental identification of nonlinear dynamical systems (NDSs) using
dynamical neural models.

The Hyperparameter tuning module consists of a single submodule B1. Estimation
of layers and neuron counts. In this submodule, hyperparameters such as the number of
layers, number of neurons per layer, types of activation functions, etc., of the neural
network are tuned. Data from the gray-box model could be used to estimate optimal
hyperparameter values.

The Neural network training module is divided into the following submodules:

C1. Training algorithm selection—the training algorithm is selected from available algorithms
implemented by the neural network training library or framework;
C2. Pretraining on generator data—data from the gray-box model could be used to pretrain a
designed neural network, thus speeding up neural network convergence;
C3. Training on data from real system—final training of the neural network is performed on
the data from the real system, so that the neural network can approximate its dynamics.

The Model validation module consists of submodule D1. N-step ahead prediction
validation. In this submodule, an n-step ahead nonlinear recurrent predictor is created from
the dynamical neural model. The overall performance of the dynamical neural model is
evaluated in terms of its capability to predict system behavior n-steps forward.
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The validated model can be used in state estimation, nonlinear control design, diag-
nostics, analyses, and more. In this paper, the nonlinear black-box model based on the
dynamical neural model is used to design a state estimator and various nonlinear con-
trollers. If validation reveals unsatisfactory performance of the black-box model, individual
modules of the proposed methodology are repeated as needed.

3. Verification of Proposed Methodology on the Educational Helicopter
Model—Case Study

The CE 150 helicopter educational model is an unstable 2 DOF educational model
designed as a benchmark system for dynamical system identification and control [1].
It consists of four subsystems—main and tail rotors as well as elevation and azimuth
subsystems. The main and tail rotors are directly powered by DC motors, whose speed is
controlled by a PWM signal. The elevation and azimuth subsystems can move freely in the
range of [−45◦; 45◦] and [−130◦; 130◦], respectively. The position of elevation and azimuth
subsystems is sensed using an incremental rotary encoder. The original CE 150 helicopter
educational model used an MF624 IO expansion card, which was replaced by the STM32
microcontroller [20]. The subsystem block diagram of the helicopter educational model,
including analytically determined interactions between subsystems, is shown in Figure 3.
The adjustable balancing weight is not considered in this paper.
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Figure 3. Subsystems of the CE 150 helicopter educational model [4].

Figure 4 shows the schematic overview of the helicopter educational model, including
the orientation of main rotor speed ωM(t), tail rotor speed ωT(t), elevation angle Ψ(t), and
azimuth angle Φ(t). These variables, alongside elevation speed Ψ̇(t) and azimuth speed
Φ̇(t), form a state vector x(t) =

[
ωM(t), Ψ(t), Ψ̇(t), ωT(t), Φ(t), Φ̇(t)

]
. Main rotor input

voltage uM(t) and tail rotor input voltage uT(t) form an input vector u(t) = [uM(t), uT(t)].
The modified helicopter educational model is used in this paper to demonstrate and

validate the presented methodology. The modification of the original CE 150 helicopter
educational model is based on replacing the MF624 input/output laboratory card with
a development board based on the STM32 microcontroller. This modification allows the
implementation of real-time control algorithms without the influence of the task scheduler
present in modern desktop operating systems. The STM32 is connected to the computer
using a widely adopted USB interface, as opposed to the outdated PCI interface of the
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MF264 IO laboratory card. Comparison of the original and modified helicopter educational
model is shown in Figure 5.

Ψ
ωT

uTuM

ωM

Main rotor

Tail rotor

Φ

Figure 4. Schematic of the CE 150 helicopter educational model.

Helicopter
educational model

Power supply

Power supply

MF624

IO interface

Computer

Data collection
Control

Simulation

Helicopter
educational model

STM32G071

IO interface
Control

Computer

Data collection
Simulation

(a)

(b)

Figure 5. Comparison of (a) original helicopter educational model and (b) modified helicopter
educational model.

The modified helicopter educational model is implemented in the first three levels of
the distributed control system (DCS) architecture in CMCT&II [23]. Helicopter skeleton,
main and tail rotors, elevation and azimuth incremental rotary sensors, and balancing
weight are present on the Process Level. The STM32 microcontroller and implemented
control algorithms are present on the Technological Level of Control and Regulation. Finally,
the simulation model, identification and control synthesis algorithms, and visualization
tools are present on the Level of SCADA/HMI and Simulation Models. Implementation of the
modified helicopter educational model into the remaining two levels (Information Level of
Control and Management Control Level) is reserved for future research. The implementation of
the modified helicopter educational model into DCS architecture in CMCT&II is illustrated
in Figure 6.

In case study [4], a gray-box model of the educational helicopter model was obtained
by combining the means of analytical and experimental identification in a complex method-
ology for gray-box modeling of nonlinear dynamical systems. The modified mathematical
model was derived from the educational manual [1]; nine experiments were realized on
the real system to obtain experimental data, unknown values of parameters were estimated
using the combination of local and global nonlinear optimization methods, the gray-box
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model was indirectly validated in a control structure, and various control algorithms were
designed and verified on the real system. Derived differential equations and experimentally
identified parameters form a digital twin of the helicopter educational model, which is
implemented as a custom subsystem in the MATLAB (R2023b) Simulink environment, as
shown in Figure 7.
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Figure 6. Implementation of the modified helicopter educational model into DCS architecture in
CMCT&II.

Figure 7. Dynamical gray-box model of the helicopter educational model.

The case study presented in this paper builds on the gray-box model obtained in [4].
The gray-box model is used as a data generator to estimate the optimal structure of the
neural network and speed up the training process. This case study validates the proposed
methodology for experimental identification of nonlinear dynamical systems using feed-
forward MLP neural networks.
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3.1. Data Acquisition from the Helicopter Educational Model

The Data acquisition is the first module of the proposed methodology consisting of
four submodules. In the Gray-box model as data generator (A1) submodule, the gray-box
model of the helicopter educational model is first used to determine a suitable opera-
tional area of the helicopter educational model while considering physical and practical
limits. Then, the gray-box model is used to generate experimental data for the neural
network training in the control structure shown in Figure 8. The elevation and the azimuth
subsystems are controlled simultaneously using a modified polynomial controller [4]. A
trapezoidal signal with random period and amplitude is selected as a reference signal for
both subsystems. The output of the gray-box model is distorted by the white noise to
improve the robustness and prevent overfitting of the final dynamical neural model [22].
Data collected from the gray-box model are shown in Figure 9.

Figure 8. Control structure for experimental data collection from the helicopter gray-box model.
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Figure 9. Experimental data collected from the helicopter gray-box model.

In the Experiment design (A2) submodule, three experiments on the real helicopter
educational model are designed to capture its dynamics. The first experiment is similar to
the experiment conducted on the gray-box model, as both the elevation and the azimuth
subsystems are controlled simultaneously using a modified polynomial controller to capture
interactions between subsystems. The additive white noise is not used to distort the system
output in this case. In the second experiment, the azimuth subsystem is locked, and the tail
rotor is excited with a constant input uT0. The elevation subsystem is controlled by the
modified polynomial controller from [4], and the random trapezoidal signal is used as an
elevation angle reference signal Ψre f (t). In the third experiment, the elevation subsystem is
locked, and the main rotor is excited with a constant input uM0. The azimuth subsystem
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is controlled by the modified polynomial controller, and a random trapezoidal signal is
used as an azimuth angle reference Φre f (t). As the dynamics of the azimuth subsystem
is highly dependent on the elevation angle Ψ(t), the experiment is repeated for different
elevation angles Ψ(t). Experimental data from all three experiments are collected using the
hardware in the loop control structure shown in Figure 10.

Data from multiple realizations of designed experiments are collected in the Data
collection (A3) submodule. All experiments are conducted on the real helicopter educational
model. Data are sampled at the selected sampling period Ts = 0.05 [s]. Although the
educational manual [1] recommended a sampling period Ts = 0.01 [s], the results in [4]
prove that the chosen sampling period is sufficient to control the helicopter educational
model. The longer sampling period allows the use of more computationally demanding
control and estimation algorithms.

Figure 10. Control structure for experimental data collection from the real helicopter educational model.

Collected data from the gray-box model and the real helicopter educational model are
processed in the Data preprocessing (A4) submodule. This involves estimating state variables
from measured data using a designed extended Kalman filter [24] and splitting the data
into training and testing datasets. A sample of data collected from the real helicopter
educational model is shown in Figure 11.

Experimental data prepared in the Data acquisition module can be used to estimate
the optimal neural network structure, train the neural network, and validate the dynamical
neural model, approximating the dynamics of the real helicopter educational model.
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Figure 11. Experimental data collected from the real helicopter educational model.
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3.2. Hyperparameter Tuning of Dynamical Neural Model

Data collected from the helicopter gray-box model are used in the Hyperparameter
tuning module to find the optimal structure of the neural network and the parameters
involved in the neural network training. This module consists of a single submodule,
Estimation of layers and neuron counts (B1), whose goal is to estimate optimal neural network
structure. Hyperparameters of interest with corresponding values or intervals are listed in
Table 1. Provided parameter intervals are selected empirically while taking into account
previous experiences [19].

Table 1. Hyperparameter values considered in the Estimation of layers and neuron counts submodule.

Parameters Values

number of hidden layers [1; 3]

neurons per hidden layer(s) 1 [36; 200]
[36; 128] and [12; 48]

[36; 100], [22; 96] and [10; 32]
activation function sig(x) 2 or tanh(x)

number of training epochs [250; 900] with 50 epoch increments
training dataset (a) with interactions (1st experiment)

(b) without interactions (2nd and 3rd experiment)
1 The number of neurons per hidden layer is ordered in descending order from the input to the output of the
neural network. 2 Sigmoid function.

A random search method is utilized to tune the selected hyperparameters. This
involves training multiple neural networks with different combinations of hyperparameters
and evaluating prediction accuracy. The overall neural network error is defined as a
weighted sum of normalized prediction error (90%) and normalized network complexity
(10%; measured in number of weights). Tuning hyperparameters using the data from the
gray-box model allows to design structure of the neural network with similar complexity as
the validated gray-box model. This strategy prevents the neural network from underfitting
and overfitting.

Optimal hyperparameter values are selected from roughly 10,000 neural networks
trained on the data from the gray-box model. The average time to train and evaluate
a single neural network is roughly 1 min using an NVIDIA RTX 4070 Ti graphics card.
The best performing neural network, chosen as a balance between the number of weights
and accuracy, has one hidden layer with 132 neurons, a sigmoidal activation function,
800 training epochs, and a training dataset with interactions. The structure of the proposed
neural network is extended with a trigonometric function layer to preprocess the elevation
angle Ψ(t) and internal normalization layers to allow the use of inputs and outputs without
rescaling. The proposed neural network represents a nonlinear state-space black-box model
(a dynamical neural model), whose structure is illustrated in Figure 12.
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Figure 12. Proposed neural network structure to approximate the dynamics of the educational
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The proposed dynamical neural model with weights adopted in the optimal hyperpa-
rameter tuning process allows to approximate dynamics of the gray-box model. To create
an approximator of the real educational helicopter model, it is necessary to train the neural
network on the data collected from the real system.

3.3. Neural Network Training

In the Neural network training module, the proposed neural network is trained
offline on the data from the real helicopter educational model. The module consists of
three submodules, out of which the first is the Training algorithm selection (C1) submodule.
This submodule aims to select an optimal training algorithm used in neural network
weight optimization. For this task, an Adam training algorithm is selected for its fast
convergence in various applications [25]. A weighted mean squared error (MSE) is used
as the loss function during training and validation to account for the varying scales of the
state prediction vector x̂(k + 1) elements. The TensorFlow neural network library is used
for dynamical neural network training.

In the Pretraining on generator data (C2) submodule, the proposed neural network
should be trained on the data from the generator. Because hyperparameter tuning is
perfomed by training multiple neural networks, the best performing neural network model
is already trained on the data from the generator. Therefore, the output of this submodule
is the neural network pretrained on the data from the gray-box model of the helicopter
education model.

Training the proposed neural network on the data from the real helicopter education
model is carried out in the Training on data from real system (C3) submodule. To avoid
data overfitting, an early stopping strategy is adopted. This strategy stops neural network
training in case the validation accuracy does not improve in five consecutive epochs. In
the training process on the data from the real system, the training is stopped early after
713 epochs.

As the proposed neural network consists of custom layers, the trained model cannot
be directly imported into MATLAB. Therefore, a conversion function is created that con-
verts a TensorFlow neural network into a MATLAB function, including all weights and
transformations. The advantage of direct conversion into a MATLAB function instead of
implementing custom layers in MATLAB is the ability to use MATLAB’s automatic code
generation to speed up simulations. The dynamical neural model trained on the data from
the real helicopter educational model needs to be validated before it can be used to design
stabilizing control algorithms.

3.4. Dynamical Neural Model Validation

In the Model validation module, the helicopter educational model dynamics predic-
tion of the dynamical neural model is validated in the N-step ahead prediction validation
submodule. First, the 10-step ahead nonlinear black-box predictor is constructed from the
dynamical neural model as shown in Figure 13. The nonlinear predictor is later compared
to the output of the real helicopter educational model and the nonlinear gray-box predictor
from [4]. The direct validation is performed in structure shown in Figure 14.

The validation results are shown in Figure 15 and Table 2. The azimuth subsystem
dynamics approximation capabilities of the black-box predictor are slightly better compared
to the gray-box predictor. In the case of the elevation subsystem dynamics approximation,
the proposed black-box predictor performs much better, i.e., prediction error against the
output of the real elevation subsystem is much smaller. The obtained results prove that the
dynamical neural model can approximate the dynamics of the real helicopter educational
model. A successfully validated dynamical neural model can be used to design stabilizing
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control algorithms and state estimators. The structure of the dynamical neural model and
trained weights form the basis of the digital twin of the helicopter educational model.
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NN model
z−8
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Figure 13. Nonlinear recurrent state-space predictor based on the dynamical neural model.
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Figure 14. Structure for direct nonlinear recurrent predictor validation and comparison.
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Figure 15. Validation of the dynamical neural model approximating helicopter educational model dynamics.
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Table 2. Quantitative comparison of gray-box and black-box predictors.

Model MSE (Ψ) MSE (Φ)

gray-box 0.097460 0.121542
black-box 0.011128 0.083265

4. Design of Stabilizing Controllers Based on the Dynamical Neural
Model of the Helicopter Educational Model

The design of polynomial, LQI, and MPC control algorithms is presented in this section.
The design of all three control algorithms is based on the dynamical neural model of the
helicopter educational model. The motivation for choosing this set of control algorithms is
to demonstrate the versatility of the dynamical neural model in the design of input–output,
optimal state-space, and model predictive controllers. The dynamical neural model of the
educational helicopter model is a one-step-ahead state-space predictor generalized as

x̂(k + 1) = f̂ NNSS(x(k), u(k)) (1)

where x(k) is a state vector, u(k) is an input vector, and f̂ NNSS(·) is the dynamical neural
model. This model is used in the design of all three selected control algorithms.

Synthesis of a polynomial control algorithm requires linearizing (1) at the selected
operational point OP = [x0, u0]. The steady state vector x0 and steady input vector u0 are
calculated numerically using the nonlinear least squares method by minimizing residuals

rOP = qOP
(
x0 − f̂ NNSS(x0, u0)

)
(2)

where qOP is a row vector that normalizes steady state vector x0 elements. The dynamical
neural model (1) is then linearized in the selected operational point OP using the Symbolic
Toolbox by calculating Jacobians symbolically:

Â =
∂f̂ NNSS(x(k), u(k))

∂x(k)

∣∣∣∣∣
OP

; B̂ =
∂f̂ NNSS(x(k), u(k))

∂u(k)

∣∣∣∣∣
OP

(3)

Finally, the linearized state-space deviation model is obtained,

∆x(k + 1) = Â∆x(k) + B̂∆u(k) (4)

where ∆x(k) = x(k) − x0 and ∆u(k) = u(k) − u0. The linearized state-space model (4)
is used as an input of the ss2tf function to convert the state-space model into transfer
functions of the elevation FΨ/UM (z) and azimuth FΦ/UT (z) subsystems

FΨ/UM (z) =
Bel(z)
Ael(z)

; FΦ/UT (z) =
Baz(z)
Aaz(z)

(5)

These transfer functions, alongside transfer functions of polynomial controllers for
elevation FUM/EΨ

(z) and azimuth FUT/EΦ
(z) subsystems,

FUM/EΨ
(z) =

Qel(z)
Pel(z)

; FUT/EΦ
(z) =

Qaz(z)
Paz(z)

(6)



Appl. Sci. 2025, 15, 9342 14 of 21

are used to formulate transfer functions of the closed-loop control structure for the
elevation subsystem

FΨ/Ψre f
(z) =

FΨ/UM (z)FUM/EΨ
(z)

1 + FΨ/UM (z)FUM/EΨ
(z)

=
Bel(z)Qel(z)

Ael(z)Pel(z) + Bel(z)Qel(z)
(7)

and for the azimuth subsystem

FΦ/Φre f
(z) =

FΦ/UT (z)FUT/EΦ
(z)

1 + FΦ/UT (z)FUT/EΦ
(z)

=
Baz(z)Qaz(z)

Aaz(z)Paz(z) + Baz(z)Qaz(z)
(8)

The characteristic polynomial of the elevation subsystem control structure is

Pelcl(z) = Ael(z)Pel(z) + Bel(z)Qel(z) (9)

and the characteristic polynomial of the azimuth subsystem control structure is

Pazcl(z) = Aaz(z)Paz(z) + Baz(z)Qaz(z) (10)

The reference characteristic polynomials P∗
elcl(z) and P∗

azcl(z) are constructed from the
desired close-loop control structure poles z∗el and z∗az. The polynomial control algorithm
is designed by comparing characteristic polynomials to reference polynomials Pelcl(z) =
P∗

elcl(z) and Pazcl(z) = P∗
azcl(z). The feedback control law for the elevation subsystem is

uM f b(k) =
3

∑
i=0

(qel i(k − i)eΨ(k − i))−
3

∑
i=1

(pel i(k − i)uM(k − i)) (11)

and for the azimuth subsystem, it is

uT f b(k) =
3

∑
i=0

(qaz i(k − i)eΦ(k − i))−
3

∑
i=1

(paz i(k − i)uT(k − i)) (12)

Multiple feedback control algorithms are designed for different operational points OP
and are smoothly switched between based on the elevation angle Ψ(k). The feedforward
control algorithm is designed based on the steady input vector u0. It approximates the
input vector u(k) based on the elevation angle Ψ(k) using second-order polynomials. The
final control law for the elevation and azimuth subsystems is formulated as

u(k) =

[
uM(k)
uT(k)

]
=

[
uM f b(k) + uM f f (k)
uT f b(k) + uT f f (k)

]
(13)

and is implemented into the control structure shown in Figure 16.
The designed polynomial feedback and feedforward control algorithm is verified using

the real helicopter educational model and helicopter gray box model. Verification results
shown in Figure 17 prove that the control algorithm designed from the dynamical neural
model of the helicopter educational model can track the elevation Ψre f (t) and azimuth
Φre f (t) reference angle. Main rotor uM(t) and tail rotor uT(t) inputs are slightly distorted
by noise. The designed polynomial pole-placement feedback and feedforward control
algorithm is computationally efficient such that it can run on the STM32 microcontroller
while maintaining the selected sampling period Ts.
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Figure 16. Control structure with polynomial pole-placement feedback and feedforward
control algorithm.
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Figure 17. Application of polynomial pole-placement feedback and feedforward control algorithm
on the real helicopter educational model (real) and gray-box model (sim).

The designed polynomial pole-placement control algorithm is quantitatively evaluated
in Table 3. The energy requirement VE(∆u) of the control algorithm is calculated as

VE(u) =
1

N − 1

N

∑
k=2

(u(k)− u(k − 1))2 (14)

The design of the LQI control algorithm is based on the linearized state-space model (4),
which is transformed into an extended form. The extended state vector xi(k) contains also
the sum of the control error ei(k). By minimizing the quadratic criteria

VLQI(xi, u) =
∞

∑
k=0

(
xT

i (k)QLQIxi(k) + uT(k)RLQIu(k)
)

(15)
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where QLQI and RLQI are positive definite weighting matrices, the control law

u(k) = −KLQIxi(k) (16)

is obtained, where KLQI is the feedback gain. The matrix KLQI is calculated by solving the
Riccati algebraic equation. Alternatively, the MATLAB function lqi can be used to synthesize
feedback gain KLQI. Values of QLQI and RLQI matrices are determined experimentally.
Multiple feedback gain matrices are designed for different operational points OP and are
smoothly switched between based on the elevation angle Ψ(k).

Table 3. Quantitative evaluation of polynomial pole-placement feedback and feedforward
control algorithm.

Environment MSE (Ψ) MSE (Φ) VE(∆uM) VE(∆uT)

simulation 1.31782 × 10−5 1.68658 × 10−4 0.006538 0.004694
real 4.15319 × 10−4 1.70688 × 10−2 1.330930 0.110878

The practical implementation of the LQI control algorithm requires the entire state
vector x(k) to be measurable, which is not the case for the helicopter educational model.
Therefore, an extended Kalman filter based on the dynamical neural model (1) was created.
The system noise covariance matrix σ2

d and the sensory noise covariance matrix σ2
v are

determined experimentally. The control structure implementing the LQI control algorithm
with the designed extended Kalman filter is shown in Figure 18.

Helicopter
educational
model

Extended
Kalman
filter

Σ D
A
C

A
D
CuM(k)

x(k)
xi(k)

ei(k)

−KLQI
Ψ(k)

Φ(k)uT(k)
Φref(k)

+

−

Ψref(k)

Figure 18. Control structure with LQI control algorithm and extended Kalman filter.

The results shown in Figure 19 and Table 4 demonstrate the application of the LQI
control algorithm and the extended Kalman filter designed from the dynamical neural
model. The presented results are obtained from the real helicopter educational model and
the helicopter gray-box model. The reference angle (Ψre f (t) and Φre f (t)) tracking capability
of the designed LQI control algorithm is decent. Due to the high noise sensitivity of the
LQI control algorithm, the main rotor uM(t) and tail rotor uT(t) input ranges are limited.
The Kalman filter based on the black-box model is computationally too demanding for
the STM32 microcontroller to maintain a constant sampling period Ts. Therefore, state
estimation and control run on an attached computer.

Table 4. Quantitative evaluation of LQI control algorithm.

Environment MSE (Ψ) MSE (Φ) VE(∆uM) VE(∆uT)

simulation 1.06076 × 10−4 2.73762 × 10−4 0.082883 0.026343
real 7.42957 × 10−4 1.45276 × 10−2 17.6894 3.34448
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Figure 19. Application of LQI control algorithm with extended Kalman filter on the real helicopter
educational model (real) and gray-box model (sim).

The model predictive control algorithm (MPC) is designed based on the nonlinear
state-space dynamical neural model (1), which is a single-step nonlinear predictor. A
recurrent multi-step predictor is constructed from (1) as

x̂(k + 1) = f̂ NNSS
(
x(k), uopt(k)

)
...

x̂(k + nu + 1) = f̂ NNSS
(
x(k + nu), uopt(k + nu)

)
...

x̂
(
k + np

)
= f̂ NNSS

(
x
(
k + np − 1

)
, uopt(k + nu)

)
(17)

where np is the prediction horizon, nu is the control horizon, and uopt(·) is the optimal
input vector sequence

uopt =
[
uopt(1), . . . , uopt(nu)

]
(18)

The optimal input sequence uopt minimizes the MPC cost function

VMPC =
np

∑
i=1

(
êT(k + i)QMPCê(k + i)

)
+

+
nu

∑
i=1

(
ûT(k + i − 1)RMPCû(k + i − 1)

) (19)
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where QMPC and RMPC are experimentally determined weighting matrices, and ê(k) =

yref (k)− Cx̂(k) is the error prediction. The MPC control law

u(k) = min
VMPC

uopt(k) (20)

applies the first element of the optimal input sequence uopt(k) to the system input u(k).
The practical implementation of the proposed MPC control algorithm based on the

predictor (17) requires that all elements of the state vector x(k) are measurable. As the
helicopter educational model does not allow measuring all states, the extended Kalman
filter designed for the LQI control algorithm is utilized to estimate state vector values x̂(k).
The final control structure for the MPC control algorithm is shown in Figure 20.

Helicopter
educational

model

Extended
Kalman

filterMPC control algorithm

D
A

C

A
D

CuM(k)

x(k)

Ψ(k)

Φ(k)uT(k)

Φref(k)

Ψref(k)
Nonlinear
predictor

u
op
t

ŷ
Optimization

algorithm
uMff(Ψref)

uTff(Ψref)

Figure 20. Control structure with MPC control algorithm and extended Kalman filter.

The MPC control algorithm with the extended Kalman filter is verified using the real
helicopter educational model and helicopter gray-box model. The verification results are
shown in Figure 21 and Table 5. The designed MPC control algorithm induces minor
oscillations of the elevation angle Ψ(t). Azimuth angle Φ(t) tracks the azimuth reference
angle Φre f (t) well with minor overshoots. Both main rotor uM(t) and tail rotor uT(t)
inputs are mostly unaffected by noise. The MPC control algorithm with prediction horizon
np = 10 and black-box predictor requires on average 1.19 ms of calculation time per sample
in the Simulink environment with an AMD Ryzen 7 5800U processor, which makes it
possible to run the control loop in real time.

Table 5. Quantitative evaluation of MPC control algorithm.

Environment MSE (Ψ) MSE (Φ) VE(∆uM) VE(∆uT)

simulation 7.12309 × 10−5 1.26564 × 10−4 0.001276 0.001845
real 2.28379 × 10−3 1.65455 × 10−2 0.069124 0.053830

All three designed control algorithms, designed from a dynamical neural model, can
stabilize a real helicopter educational model. Further improvements can be made by tuning
synthesis parameters. In this paper, the same synthesis parameters are used as in [4] to
make results comparable.
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Figure 21. Application of MPC control algorithm with extended Kalman filter on the real helicopter
educational model (real) and gray-box model (sim).

5. Conclusions
In this paper, a methodology based on neural networks for experimental nonlinear

dynamical system identification is proposed. The proposed methodology uses the data
obtained from the gray-box model, which allows to determine optimal neural network
structure and speeds up the training process. The verification of the proposed methodology
is presented in a case study of the experimental identification of the helicopter educational
model using feed-forward MLP neural networks. Data from the helicopter gray-box model
are used to fine-tune the neural network structure and pre-train the neural network on the
data with known noise properties. Later, data from the real helicopter educational model,
which also capture interactions between elevation and azimuth subsystems, are used to
train the neural network. The dynamical neural model is directly validated in a 10-step
ahead prediction task and compared to the nonlinear predictor based on the gray-box
model. Prediction error of the proposed nonlinear predictor based on the dynamical neural
model is significantly smaller than that of the nonlinear predictor based on the gray-box
model. The validated dynamical neural model represents a digital twin of the real helicopter
educational model as it matches its dynamics. The digital twin is used to design polynomial,
LQI, and MPC control algorithms that are evaluated using qualitative and quantitative
comparison. The design of stabilizing control algorithms from the dynamical neural model
indirectly validates that the dynamical neural model is a digital twin of the helicopter
educational model. Although the dynamical neural model captures interactions between
subsystems, it can be further improved by considering the effect of the electronically
adjustable balancing weight on the elevation subsystem. Also, different control synthesis
parameters can be used to enhance the performance of the designed control algorithms.
The particular synthesis parameters are selected for direct comparison with results obtained
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in [4]. The proposed methodology can be used to create digital twins of various components
used in the ALICE experiment at CERN.
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