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ABSTRACT
This article deals with the design of a generalized methodology for the identification of nonlinear dynamic systems using a combi-

nation of analytical and experimental identification methods. The proposed methodology is divided into modules that can be repeated
if necessary. Verification of the methodology is presented on the modified helicopter educational model CE 150 from Humusoft com-
pany. A mathematical model of the system with both rotors approximated by a black-box nonlinear model is presented. The proposed
experiments for obtaining experimental data are described in detail and are used in the estimation of model parameters. The gray-box
model is validated in a control structure with a control law optimized for microcontrollers. Indirect validation of the gray-box model
with the real helicopter educational model points to good approximation properties of the gray-box model and its potential for further
use in the identification and control using artificial intelligence methods.

Keywords: Nonlinear Dynamical Systems, Identification Methodology, Parameter Estimation, Gray-box Model, CE150 Helicopter
Educational Model, Digital Control.

1. INTRODUCTION

The helicopter educational model designed by Humu-
soft company is an unstable system with two degrees of
freedom. The educational model is mainly used for edu-
cational and research activities in the system identification
and design of control algorithms. The helicopter educa-
tional model can partially rotate in elevation and azimuth
angle while being controlled by two rotors. The presence
of strong cross-coupling between elevation and azimuth is
challenging mainly in the system identification. The third
control element (balancing weight) can be used in the ro-
bustness verification of the designed control algorithms.
The principles and experiences from the educational model
can be used in the field of unmanned aerial vehicles.

In the research, the CE 150 helicopter educational
model has been used in many system identification and con-
trol design applications. In [1–3], authors derived a mathe-
matical model of the system in the form of differential equa-
tions using the Euler-Lagrange method. The mathemati-
cal model derived in the educational tutorial [4] was used
in [5–7] including the parameters. Additionally, in [3, 8]
the parameters of the mathematical model were estimated
using genetic algorithms. A set of linear black-box mod-
els was identified in [9] at different operational points to
capture the nonlinear properties of the system. In [1], the
authors used a neural network to approximate the dynam-
ics of the system. From control design perspective, input-
output [5, 7, 10], state-space [5], robust [2, 6, 10–13], self-
tuning [12], predictive [14] and fuzzy [6, 8, 15] control al-
gorithms were used to control the helicopter educational
model. In [1], the authors used feedback linearization to
compensate for nonlinearities, and in [16] the model-free
control algorithm design with neural network discriminator
was proposed. In [15], the authors modified the educational
model of the helicopter from Humusoft by replacing the
lab card with Arduino Mega and by adding an IMU (in-
ertial measurement unit) sensor to measure angular speed
of elevation and azimuth. In addition to the model from

Humusoft, the authors used helicopter model from Quanser
[2, 16], or designed and built their own model [1, 3].

In the research group the Center of Modern Con-
trol Techniques and Industrial Informatics (CMCT&II) at
the Department of Cybernetics and Artificial Intelligence
(DCAI) at the Faculty of Electrical Engineering and Infor-
matics (FEEI) at the Technical University (TU) of Košice,
the authors of this article are part of, the helicopter educa-
tional model was used in the research and educational ac-
tivities. In the research, linear structures using input-output
regression models ARX and ARMAX [17] and linear state
models [17, 18] were used in the identification of the he-
licopter educational model. Similarly, non-linear model
structures were also used, e.g. single step predictors based
on neural networks [19] or analytical model from the edu-
cational tutorial [4]. In [17], the experimental identification
methodology is presented, including model validation using
the analysis of model residuals in Matlab/Simulink environ-
ment. Identified models were subsequently used to design
control algorithms, e.g. input-output control synthesized
using the pole placement method [17], state-space con-
trol with integrator [17, 18], model-predictive control [19],
and neural network model-predictive control [19]. Various
control structures have been used, including feed-forward
nonlinearity compensation with polynomial approximation
[17] and discrete Kalman state estimator [19].

In this article, a complex methodology for the nonlinear
system modeling and identification is proposed, which is
verified in the case study realized on the helicopter educa-
tional model. Modifications to the mathematical model of
the CE 150 helicopter educational model are presented in
the analytical identification. Parameters of the mathemati-
cal model are estimated using experimental identification.
Newly designed experiments with additional sensors are
presented, as input-out data used previously is deemed in-
sufficient. The selected model structure requires the choice
of more advanced methods of nonlinear parameter estima-
tion,where the combination of genetic algorithms and sur-
rogate optimization is selected. An indirect validation of the
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identified model is performed in a control structure using
the polynomial control algorithm with instantaneous lin-
earization, which has been implemented into STM32 mi-
crocontroller. The resulting model is considered as the
digital twin of the helicopter educational model, because
it closely matches the dynamics of the real system. The
potential of the digital twin of the helicopter educational
model lies in the creation of intelligent neural network-
based models.

In section 2, the proposed methodology for the identi-
fication of unstable nonlinear MIMO dynamical systems is
presented, which unifies analytical and experimental identi-
fication methods. The verification of the proposed method-
ology is presented in section 3 as part of the case study
focused on the identification of the helicopter educational
model. The case study includes the derivation of the mathe-
matical model of the nonlinear dynamical system, a detailed
description of the designed experiments, estimation of the
model parameters, and validation of the model in a control
structure. The obtained results are evaluated in conclusions
section with the main contributions pointed out.

2. DESIGN OF METHODOLOGY FOR MODELING
AND IDENTIFICATION OF NONLINEAR DY-
NAMICAL SYSTEMS

The proposed generalized methodology for modeling
and identification of nonlinear dynamic systems (NDS) is
shown in Fig. 1. The methodology is designed to combine
the principles of analytical and experimental identification.
The resulting model thus belongs to the group of gray-box
models that use a combination of physics insight and data-
driven methods. The reviewed literature [20–23] mentions
the advantages of combining analytical and experimental
identification but lacks a description of the overall method-
ology combining both principles. One of the contributions
of this article is the proposal of a unifying methodology.

The proposed methodology consists of 4 modules:
Analysis, Data collection, Parameter estimation, and Model
validation. The Analysis module uses the principles of an-
alytical identification to create a mathematical model of the
identified system. It is divided into 4 submodules:
A1. System decomposition - the purpose of decomposition
is to divide the identified system into subsystems to make it
easier to derive mathematical model,
A2. Subsystem modeling - a mathematical model of each
subsystem is derived using natural laws, such as balance
equations,
A3. Model substitution - in case the mathematical model
of the subsystem is complex, it is advisable to choose its
approximation, e.g. substitution with a black-box model,
A4. Mathematical model formulation - derived models of
individual subsystems are combined to obtain a mathemat-
ical model of the identified system.

The Data collection module is focused on obtaining
and preparing experimental data that capture the dynamics
of the identified system. It consists of 3 submodules:
C1. Experiment design - an experiment on the identified
system is designed and prepared,
C2. Data recording - data from the experiment is recorded
with the selected sampling period Ts,

C3. Data processing - recorded data is further processed in
order to remove noise, normalize data, etc.

The Parameter estimation module is used to estimate
model parameters in the selected structure from the Analy-
sis module. The module consists of three submodules:
E1. Optimization method selection - based on the chosen
structure of the mathematical model, a suitable method for
parameter estimation is selected,
E2. Design of criteria function - the criteria function design
must take into account the weighting of system outputs, pa-
rameter sensitivity, and data quality,
E3. Parameter estimation - the selected optimization
method and criterion function are applied to obtain the pa-
rameter values of the mathematical model.

The Model validation module verifies the approxima-
tion capabilities of the gray-box model. In the proposed
methodology, the identified model is validated in the con-
trol structure with the aim of generalizing the methodology
for unstable systems. It consists of two submodules:
V1. Control law design - a stabilizing control law is de-
signed based on the identified gray-box model,
V2. Validation in control structure - the designed control al-
gorithm is applied to the mathematical model and the iden-
tified system, while the inputs and outputs are compared.

Data collection

C1. Experiment design
C2. Data recording
C3. Data processing

Analysis

A1. System decomposition
A2. Subsystem modeling
A3. Model substitution
A4. Mathematical model formulation

E1. Optimization method selection
E2. Design of criteria function
E3. Parameter estimation

Parameter estimation

V1. Control law design
V2. Validation in control structure

Model validation

Design and verification of control laws

Methodology for modeling and identification of NDS
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Fig. 1 Methodology for modeling and identification of nonlinear
dynamic systems (NDS).

In case the validation is unsatisfactory, individual steps
of the proposed methodology can be repeated in order to
obtain a more suitable model. The validated gray-box
model can be used in analysis, control law design using
classical and intelligent methods, or diagnostics. In the next
section, the proposed NDS identification methodology is
verified on the helicopter educational model made by Hu-
musoft company.
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Fig. 2 CE 150 Helicopter Educational Model.

3. VERIFICATION OF PROPOSED METHODOL-
OGY ON THE MODIFIED HELICOPTER EDU-
CATIONAL MODEL - CASE STUDY

In this section, the proposed methodology is verified by
the case study of the modified helicopter educational model
identification in the structure of the gray-box model. The
helicopter educational model is based on the CE 150 he-
licopter model from Humusoft company shown in Fig. 2.
The proposed modification replaces the MF-624 laboratory
card with an STM32G071-based development board with
the USB-UART communication interface. This modifica-
tion ensures compatibility with modern computers. A com-
munication protocol is proposed that sends binary data bidi-
rectionally via the USB-UART serial interface. This en-
ables interactive integration of the helicopter educational
model in the Simulink simulation environment, similarly to
the hardware in a loop simulation paradigm.
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Fig. 3 Decomposition of CE 150 Helicopter into subsystems.

3.1. Mathematical modeling

The modified helicopter educational model is identified
using the methodology presented in section 2. Within the
Analysis module, the Model decomposition (A1) is per-
formed first, as shown in Fig. 3. From the listed subsystems,
only the main and auxiliary rotor subsystems and the eleva-
tion and azimuth subsystems are considered. The elevation
and azimuth sensors use an incremental encoder for posi-
tion sensing, the dynamics of which are significantly faster
compared to other subsystems. Therefore, both sensors are

modeled statically. The balancing weight subsystem is also
not considered, as our intent is to use it as a fault signal in
the control algorithm verification.

Selected subsystems (main and tail rotor subsystems, el-
evation and azimuth subsystems) are modeled separately in
the Subsystem modeling (A2) submodule. Both rotors of
the educational model consist of a DC motor to which the
propeller is directly attached (without a gearbox). A DC
motor can be modeled using Kirchhoff’s second law

L
di(t)

dt
+Ri(t)+Keω(t) = u(t) (1)

where L [H] is coil inductance, i(t) [A] is a coil current,
R [Ω] is coil resistance, Ke [V.s.rad−1] is motor electro-
motive constant, ω(t) [rad.s−1] is motor angular velocity,
u(t) [V] is applied voltage, and the balance equation of ro-
tary motion

Jω̇(t)+bω(t) = Kt i(t) (2)

where J [kg.m2] is motor inertia, b [N.m.s] is friction con-
stant Kt [N.m.A−1] is motor torque constant (numerically
Kt = Ke). The rotor thrust force Fa(t) [N] depends on the
angular velocity ω(t) of the rotor and can be modeled us-
ing static gain as

Fa(t) = ρAKaω
2(t) (3)

where Fa(t) is trust force produced, ρ [kg.m−3] is air den-
sity, A [m2] is propeller area cross-section, Ka [m2.rad−2] is
coefficient of air speed dependence on motor angular veloc-
ity ω(t) [24]. Such a rotor model contains many parameters
that must be identified. Also, the model is based on several
assumptions and simplifications (e.g. it does not consider
thrust reduction by air flow being obstructed by the heli-
copter’s body). For the stated reasons, a Model substitution
(A3) was opted for. In [25], the DC motor is modelled us-
ing a black-box model (first-order transfer function). Such a
simplification was sufficient due to the narrow speed range
of the fan. Since a wider speed range is expected in the
case of the helicopter’s rotors, the damping is modeled us-
ing polynomials due to their excellent approximation prop-
erties. The nonlinear black-box model of the main rotor is
proposed as

ω̇M(t)+
2

∑
i=0

pbM(i)ω
i
M(t)︸ ︷︷ ︸

PbM (ωM(t))

ωM(t) = KMuM(t) (4)

where ωM(t) [rad.s−1] is main rotor speed, pbM(i) is i-th co-
efficient of a 2nd degree polynomial PbM (ωM(t)) [s−1] ap-
proximating friction, KM [rad.s−2.V−1] is main rotor con-
stant, and uM(t) [V] is main rotor input voltage.

Similarly, the nonlinear black-box model of the tail ro-
tor is proposed as

ω̇T (t)+
2

∑
i=0

pbT (i)ω
i
T (t)︸ ︷︷ ︸

PbT (ωT (t))

ωT (t) = KT uT (t) (5)
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where ωT (t) [rad.s−1] is tail rotor speed, pbT (i) is i-th coeffi-
cient of a 2nd degree polynomial PbT (ωT (t)) [s−1] approxi-
mating friction, KT [rad.s−2.V−1] is tail rotor constant, and
uT (t) [V] is tail rotor input voltage.

The thrust force F(t) [N] generated by a spinning pro-
peller can be derived analytically. However, the analytical
model is based on many simplifications and does not take
physical dimensions into account. Therefore, it is better to
model the rotor’s thrust force using a nonlinear black-box
model. The main rotor thrust force FM(t) [N] is therefore
modeled as

FM(t) =
4

∑
i=0

pFM(i)ω
i
M(t)︸ ︷︷ ︸

PFM (ωM(t))

(6)

where pFM(i) is i-th coefficient of a 4th degree polynomial
PFM (ωM(t)) [N] approximating dependence of main rotor
thrust force FM(t) on main rotor speed ωM(t).

The tail rotor thrust force FT (t) [N] is modeled as

FT (t) =
4

∑
i=0

pFT (i)ω
i
T (t)︸ ︷︷ ︸

PFT (ωT (t))

(7)

where pFT (i) is i-th coefficient of a 4th degree polyno-
mial PFT (ωT (t)) [N] approximating dependence of tail rotor
thrust force FT (t) on tail rotor speed ωT (t).

FM

Ψ

lM

JE

τM
τΦ
τMRτg

τbE

Fig. 4 Elevation subsystem schematic.

The model of the elevation subsystem (see Fig. 4) can
be derived by constructing the balance equation of the ro-
tary motion, by considering the moment of influence of
the main rotor τM(t) [N.m], the centrifugal moment due to
rotation in azimuth τ

Φ̇
(t) [N.m], the gravitational torque

τg [N.m], the moment of friction (Coulomb and viscous
friction) τbE (t) [N.m], and the moment of gyroscopic ef-
fect τMR(t) [N.m]. The model of the elevation subsystem is
formulated as

JEΨ̈(t)︸ ︷︷ ︸
τE (t)

= lMFM(t)︸ ︷︷ ︸
τM(t)

+
τgE

2g
Φ̇

2(t)sin(2Ψ(t))︸ ︷︷ ︸
τ

Φ̇
(t)

−

−τgE cos(Ψ(t))︸ ︷︷ ︸
τg(t)

−(bvEΨ̇(t)+bcE sgn(Ψ̇(t)))︸ ︷︷ ︸
τbE (t)

+

+KEΦ̇(t)ωM(t)sin(Ψ(t))︸ ︷︷ ︸
τMR(t)

(8)

where JE [kg.m2] is moment of inertia of the elevation sub-
system, Ψ(t) [rad] is elevation angle, τE(t) [N.m] is final

torque applied to elevation subsystem, lm [m] is distance
between main rotor and elevation axis, τgE [N.m] is base
gravitational torque, g [m.s−2] is gravitational acceleration,
Φ(t) [rad] is azimuth angle, bvE [N.m.s] is coefficient of vis-
cous friction, bcE [N.m] is coefficient of Coulomb friction,
and KE [kg.m2.rad−1] is coefficient of gyroscopic effect.

Φ
τTτR

τbA
JA

FT

lT

Fig. 5 Azimuth subsystem schematic.

Derivation of the azimuth subsystem (see Fig. 5) model
requires the construction of a balance equation. Consider-
ing the moment of the tail rotor influenced by the elevation
angle τT (t) [N.m], the reactive moment of the main rotor
τT R(t) [N.m], and the moment of friction (Coulomb and vis-
cous friction) τbA(t) [N.m], the azimuth subsystem model is
formulated as

JA cos(Ψ(t))Φ̈(t)︸ ︷︷ ︸
τA(t)

= lT FT (t)cos(Ψ(t))︸ ︷︷ ︸
τT (t)

−

−KAωM(t)cos(Ψ(t))︸ ︷︷ ︸
τT R(t)

−(bvAΦ̇(t)+bcA sgn(Φ̇(t)))︸ ︷︷ ︸
τbA (t)

(9)

where JA [kg.m2] is moment of inertia of the azimuth sub-
system, lT [m] is distance between the tail rotor and azimuth
axis, KA [N.m.s] is coefficient of reactive moment of the
main rotor, bvA [N.m.s] is coefficient of viscous friction, and
bcA [N.m] is coefficient of Coulomb friction. Models of the
elevation (8) and azimuth (9) subsystem were adopted from
the educational tutorial [4].
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Fig. 6 Gray-box model of the Helicopter Educational Model in
Simulink.

The final mathematical model is formulated by com-
bining models of all subsystems represented by equations
(4, 5, 8, 9) in the Model formulation (A4) submodule of
the proposed methodology. In this submodule, the obtained
mathematical model is implemented into the Simulink sim-
ulation environment, as shown in Fig. 6. The model imple-
mentation in the Simulink allows for convenient parameter
estimation and control algorithm verification later on.

The obtained mathematical model of the helicopter ed-
ucational model formulated in this way defines a structure,
whose parameter values are not known. Therefore, it is nec-
essary to proceed with modules based on the experimental
identification methods in the presented methodology.
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3.2. Capturing system dynamics

The unknown parameter values of the mathematical
model are to be estimated from the experimental data pre-
pared in the Data collection module.

For reliable parameter estimation, the Experiment de-
sign (C1) is essential, as experiments capture the dynamics
of the identified system.

The design of the experiments can utilize the already
performed system decomposition, as the design of exper-
iments and the subsequent parameter estimation done in-
dividually for each subsystem lowers the overall computa-
tional complexity. To identify the helicopter educational
model, nine experiments are proposed.

In the 1st experiment, a rectangular signal uM(t) with
random amplitude and period is applied to the main rotor.
The rotor thrust force FM(t) and the angular velocity ωM
are recorded using a load cell and photogate respectively.

The 2nd experiment is similar to the 1st experiment as
the scenario has been repeated for the tail rotor to capture
its dynamics.

The 3rd experiment is focused on the estimation of base
gravitational torque τgE by balancing the elevation subsys-
tem with additional counterweights added to the tail of the
helicopter body. After settling and reaching the balance,
the elevation angle Ψ and counterweight weight m∆ are
recorded. The azimuth subsystem is locked.

In the 4th experiment, the autonomous elevation subsys-
tem is turned by 90◦to change the direction of gravitational
force action. Disturbing the elevation subsystem from its
equilibrium state causes self-oscillations to occur, that are
recorded. The azimuth subsystem is locked.

The 5th experiment is performed with the azimuth sub-
system locked. Various input voltages uM(t) are applied to
the main rotor of the helicopter, while the elevation angle
Ψ(t) does not exceed the center of the operational range
Ψ < 0. This experiment captures the dynamics of the au-
tonomous elevation subsystem in its stable region.

In the 6th experiment, the autonomous azimuth subsys-
tem is rotated by 90◦. By disturbing the azimuth subsystem
from its equilibrium, autonomous oscillations are achieved.
The elevation subsystem is locked.

The 7th experiment requires that the elevation subsys-
tem is locked, and a simple rule-based azimuth subsystem
control algorithm is designed. The designed control algo-
rithm ensures stable oscillations of the azimuth subsystem
within its operational limits.

During the 8th experiment, the elevation subsystem is
locked, and the main rotor input signal uM(t) is varied. For
each value, a corresponding tail rotor input uT (t) is exper-
imentally searched that compensates for the reactive mo-
ment of the main rotor on the azimuth subsystem.

In the 9th experiment, the input signal uM(t) of the main
rotor is varied while the azimuth subsystem is rotated man-
ually around its axis. This experiment captures the effect
of the rotation of the azimuth subsystem on the elevation
subsystem.

The Data recording (C2) submodule is used to record
data from the proposed experiments with a sampling period
of Ts = 0.01 [s] (100 [Hz]). The choice of the sampling pe-

riod is based on the educational manual [4]. In case the
sampling period is too short, the data can be resampled in
the data processing module later. The only exception to
the selected sampling period is 1st and 2nd experiment, in
which the HX711 module is used to measure thrust with a
load cell at a sampling frequency of 10 [Hz] and a digital os-
cilloscope for measuring angular velocity photogate pulses
running at a sampling frequency of 10 [MHz].

In the Data processing (C3) submodule, it is necessary
to process the data from 1st and 2nd experiment. The pulses
from the photogate are converted to the angular velocity of
individual rotors while considering the number of propeller
blades. An additional STM32-based development board is
used to read the data from the load cell. A single digital
pulse is used to synchronize the time between the oscil-
loscope and the development boards. The data measured
from 8th experiment also requires preprocessing, where az-
imuth velocity is calculated using a difference of the az-
imuth angle that is later smoothed using the median filter.
Preprocessing data from other experiments requires only
trimming. This is due to the behavior of the identified sys-
tem at the beginning of each experiment that could not be
fully explained by the model. Data processed in this way
can be used to estimate unknown parameter values.

3.3. Estimation of model parameters

In the Parameter estimation module, the estimation
of unknown parameter values of the mathematical model
ϕϕϕ = [pbM0, pbM1, pbM2, KM, pbT 0, pbT 1, pbT 2, KT , pFM0,
pFM1, FbM2, FbM3, FbM4, pFT 0, pFT 1, FbT 2, FbT 3, FbT 4, JE ,
τgE , bvE , bcE , KE , JA, KA, bvA , bcA ] is dealt with. As part
of the Optimization method selection (E1) submodule, suit-
able optimization methods are selected. The following
three optimization methods are selected: nonlinear least
squares method, surrogate optimization, and genetic algo-
rithms. Surrogate optimization and genetic algorithms are
used for the initial estimation of unknown parameter val-
ues with consequential fine-tuning using the nonlinear least
squares method. The surrogate optimization method is suit-
able for quick estimation of a smaller number of parame-
ters. With a larger number of parameters to be estimated,
genetic algorithms are preferred as they allow to search the
entire solution space.

The estimation of unknown parameter values ϕϕϕ is per-
formed for subsystems separately. The experiments are de-
signed in a way that the data can be used for the estimation
of the fewest parameters per experiment, which simplifies
the Design of criteria function (E2). A generic quadratic
criterion function is selected in the form

V (ϕϕϕ) =
N

∑
k=1

εεε
T (k,ϕϕϕ)QQQVVV εεε(k,ϕϕϕ) (10)

where εεε(k,ϕϕϕ) is prediction error vector and QQQVVV is the
weighting matrix. The weighting matrix QQQVVV can be omit-
ted in systems with a single output, as it has no effect on
the parameter estimation. Parameter estimation of the heli-
copter educational model requires a diagonal positive def-
inite weighting matrix QQQVVV for the first two experiments to
scale the values of the angular velocity of the rotors and the
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thrust of the rotors. Otherwise, the weighting matrix QQQVVV is
omitted as the output prediction error is scalar.
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Fig. 7 Main rotor subsystem parameter estimation; (a) main
rotor speed ωM ; (b) main rotor thrust FM .
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Fig. 8 Tail rotor subsystem parameter estimation; (a) tail rotor
speed ωM ; (b) tail rotor thrust FM .

The Parameter estimation (E3) relies on the minimiza-
tion of the selected criterion function V (ϕϕϕ). This results in
the overall reduction of the prediction error εεε(k,ϕϕϕ) thus al-
lowing the model to approximate the dynamics of the real
system. The parameters are estimated using the Simulink
Design Optimization Toolbox in the Simulink simulation
environment. The parameters of the main and tail rotor sub-
systems are estimated from the first two experiments, with
results shown in Fig. 7 and Fig. 8 , where lower indexes sys
and iden denote experimental data and output of the non-
linear model respectively. For comparison, the results are
compared to the linear structure (lower index lin) of the ro-
tor model described in the educational manual [4].

Fig. 10 displays the estimation of the base gravity mo-
ment τgE . The experiment is based on the schematic of the

elevation subsystem considering the counterweight shown
in Fig. 9. Mathematically, it can be expressed from (8) as

τgE cos(Ψ +Ψm) = lm∆
m∆gcos(Ψ +Ψm∆

) (11)

where Ψm and Ψm∆
are angular deviations from elevation

axis, lm∆
is distance between elevation axis and counter-

weight, and m∆ is counterweight mass.

Ψm
Ψ

τmΔ

ΨmΔτgE mΔ

lmΔ

Fig. 9 Estimation of base gravitational torque τgE - elevation
subsystem schematic.
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Fig. 10 Estimation of base gravitational torque τgE .

Data from the remaining experiments is used to estimate
the unknown parameter values of the elevation and azimuth
subsystems. A model with estimated parameter values ϕϕϕ

must be validated before it can be used in other tasks, such
as control algorithm design.

3.4. Validation of the gray-box model in control struc-
ture

Since the helicopter educational model is unstable in
an open-loop, Model validation module is performed in
the control structure. This requires the Control law design
(V1). A polynomial control algorithm with instantaneous
linearization is selected. The design of a polynomial con-
trol algorithm requires a linearized and discretized model of
the helicopter educational model in transfer function form.
The state vector of the helicopter educational model is

xxx(t) = [x1(t) x2(t) x3(t) x4(t) x5(t) x6(t)]T =

= [ωM(t) Ψ(t) Ψ̇(t) ωT (t) Φ(t) Φ̇(t)]T

(12)

and the vector of inputs is

uuu(t) = [uM(t) uT (t)]T (13)

The mathematical model of the helicopter educational
model can be represented by a vector function of state vari-
ables evolution in time as follows

ẋxx(t) = fff ccc(t,xxx(t),uuu(t)) (14)
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which can be expanded to the system of nonlinear differen-
tial equations as follows

ẋ1(t) =−PbM (x1(t))x1(t)+KMuM(t)
ẋ2(t) = x3(t)

ẋ3(t) =
τM(x1)+τ

Φ̇
(x2,x6)−τg(x2)−τbE (x3)+τMR(x1,x2,x6)

JE
ẋ4(t) =−PbT (x4(t))x4(t)+KT uT (t)
ẋ5(t) = x6(t)

ẋ6(t) =
τT (x2,x4)−τT R(x1,x2)−τbA (x6)

JA

(15)

The model (14) is linearized at the selected operating point

OOOPPP = [x10 x20 x30 x40 x50 x60 uM0 uT 0]
T (16)

The operating point OOOPPP is calculated by solving a system
of algebraic equations fff ccc(·) = 000 at selected elevation an-
gle Ψ0. A linearized perturbation state-space model of the
system is derived by calculating the Jacobians of the state
function fff ccc(·) as

AAA =
∂ fff ccc(t,xxx(t),uuu(t))

∂xxx(t)

∣∣∣∣
OOOPPP

;BBB =
∂ fff ccc(t,xxx(t),uuu(t))

∂uuu(t)

∣∣∣∣
OOOPPP

(17)

where AAA and BBB are the matrices of the linear state-space
perturbation model of the system at the selected operating
point OOOPPP. The matrix CCC is defined as

CCC =

[
0 1 0 0 0 0
0 0 0 0 1 0

]
(18)

and the matrix DDD is zero. The linearized state-space pertur-
bation model is defined as

∆ẋxx(t) = AAA∆xxx(t)+BBB∆uuu(t)
∆yyy(t) =CCC∆xxx(t)+DDD∆uuu(t) (19)

where ∆xxx(t) = xxx(t)−xxxOOOPPP, ∆uuu(t) = uuu(t)−uuuOOOPPP, and ∆yyy(t) =
yyy(t)−yyyOOOPPP. The linearized perturbation model is discretized
using the c2d function and converted into a transfer func-
tion using the ss2tf function. Both functions are imple-
mented in the Control System Toolbox in Matlab. In the
following, only the transfer function of elevation angle to
main rotor input

FΨ/UM (z) =
Bel(z)
Ael(z)

=
bel1z−1 +bel2z−2 +bel3z−3

ael0 +ael1z−1 +ael2z−2 +ael3z−3

(20)

and azimuth angle to tail rotor input

FΦ/UT (z) =
Baz(z)
Aaz(z)

=
baz1z−1 +baz2z−2 +baz3z−3

aaz0 +aaz1z−1 +aaz2z−2 +aaz3z−3

(21)

is considered. Ael(z) and Bel(z) are denominator and nu-
merator polynomials of the elevation subsystem transfer
function of rank nel = 3 and mel = 2 respectively. Similarly,
Aaz(z) and Baz(z) are denominator and numerator polyno-
mials of the azimuth subsystem transfer function of rank
naz = 3 and maz = 2 respectively. Other transfer functions
are ignored in the design of the control algorithm.

The transfer function of the polynomial controller for
the elevation subsystem FUM/EΨ

(z) and for the azimuth sub-
system FUT /EΦ

(z) must be of the same rank as the controlled
subsystem. The elevation subsystem polynomial controller
transfer function is defined as

FUM/EΨ
(z) =

Qel(z)
Pel(z)

=
qel0 +qel1z−1 +qel2z−2 +qel3z−3

1+ pel1z−1 + pel2z−2 + pel3z−3

(22)

where Qel(z) and Pel(z) are numerator and denomina-
tor polynomials of the transfer function of rank nQel = 3
and nPel = 3 respectively. A suitable method to calcu-
lated the elevation subsystem controller parameters ϕϕϕelcl =
[qel0 ... qel3 pel1 ... pel3]

T is the pole-placement method.
The transfer function of the control structure is formulated
using the elevation subsystem (20) and polynomial con-
troller (22) transfer functions as

FΨ/Ψre f (z) =
FΨ/UM (z)FUM/EΨ

(z)
1+FΨ/UM (z)FUM/EΨ

(z)
=

=
Bel(z)Qel(z)

Ael(z)Pel(z)+Bel(z)Qel(z)

(23)

The characteristic polynomial Pelcl(z,ϕϕϕelcl) of the control
structure (23) is thus defined as

Pelcl(z,ϕϕϕelcl) = Ael(z)Pel(z)+Bel(z)Qel(z) (24)

whose rank is twice the system rank nPelcl = 6. To design
the polynomial control algorithm using the pole-placement
method, a reference characteristic polynomial P∗

elcl(z) of
rank nP∗

elcl
= 6 is constructed based on the experimentally

selected poles (z∗1,z
∗
2, ...,z

∗
6) of the control structure as

P∗
elcl(z) =

6

∏
i=1

(z− z∗i ) (25)

Coefficients of the elevation subsystem controller ϕϕϕelcl are
calculated by comparing the coefficients of the same expo-
nent of the control structure characteristic polynomial (24)
with the coefficients of the reference characteristic polyno-
mial (25) as follows

Ael(z)Pel(z)+Bel(z)Qel(z) =
6

∏
i=1

(z− z∗i ) (26)

which yields system of 7 algebraic equations. Finally, the
feedback control law uM f b(k) is formulated as

uM f b(k) =
3

∑
i=0

(qel i(k− i)eΨ (k− i))−

−
3

∑
i=1

(pel i(k− i)uM(k− i))

(27)

To compensate for the nonlinearities of the elevation
subsystem, a feedforward controller is proposed. The am-
plitude of the input signal is set by the operating point OOOPPP
to be equal to uM f f 0 = uM0. The elevation control algorithm
at the selected operating point OOOPPP is defined as

uM(k) = uM f b(k)+uM f f 0 (28)
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The design of feedback uM f b and feedforward uM f f
control algorithms is repeated for operating points with
different elevation angles Ψ across the whole operational
range of the elevation subsystem. The feedforward con-
trol algorithm action is approximated by 2nd-degree poly-
nomial uM f f (Ψ) = PuM f f (Ψ). A set of feedback control
algorithms is designed for the elevation subsystem at each
operating point. To avoid sudden spikes in the control input
when the system transitions from one operating point to an-
other, coefficients of the control algorithm for the elevation
subsystem are approximated with 3rd-degree polynomials
qel0(Ψ) = Pqel0(Ψ). Such modification allows to store con-
troller parameters in the memory of constant size defined by
the polynomial degree and system rank while providing re-
duced computational needs compared to the instantaneous
linearization approach. This makes it perfect for direct im-
plementation in the microcontroller firmware. A separate
control algorithm is designed for the azimuth subsystem in
a similar way uT (k) = uT f b(k) + uT f f (Ψ), whose coeffi-
cients also depend on the elevation angle Ψ . The proposed
control structure in depicted in Fig. 11.

Helicopter
Educational

ModelD
A

C

A
D

C

uMfb(eΨ, Ψ)
eΨ(k)

uM(k) Ψ(k)

Ψ(k)

Ψ(k)

Φ(k)uT(k)

Elevation control

+

+

+

−

−

uMff(Ψref)

uTfb(eΦ, Ψ)

Azimuth control

+

+
uTff(Ψref)

Ψref(k)

Ψref(k)

Ψref(k)

+

Φref(k) eΦ(k)

Fig. 11 The control structure with feedback and feedforward
control algorithms for elevation and azimuth subsystems.
The designed control structure is used in Validation in

control structure (V2) submodule to assert the validity of
the gray-box model with identified parameters. Indirect
model validation is performed by comparing the inputs and
outputs of the gray-box model implemented in the sim-
ulation environment with the real helicopter educational
model. The control structure used in the gray-box model
validation is shown in Fig. 12.

Helicopter
Educational

ModelD
A

C

A
D

C

Gray-box
Helicopter

Model

Elevation control
&

Azimuth control

Elevation control
&

Azimuth control

eΨ(k)

êΨ(k)

eΨ(k)

êΦ(k)

uM(k) Ψ(k)

Φ(k)uT(k)
+

−

+

−

Ψref(k)

Φref(k)

ûM(k) Ψ(k)

ûT(k)

ˆ

Ψ(k)ˆ

Φ(k)ˆ

Ψ(k)

Fig. 12 The control structure for validation of the Helicopter
educational model.

The results of the gray-box model validation are shown
in Fig. 13, where lower indexes re f , exp and sim denote
reference signal, output of the real system and output of the
gray-box model respectively. The designed control algo-
rithm is able to stabilize the real system. The elevation sub-
system of the real system reacts similarly when compared
to the gray-box model. The slight sway at 113 [s] caused by

the control algorithm is noticeable in both outputs. When
comparing the inputs of the azimuth subsystem, there is a
noticeable deviation at the start of the experiment, which
is caused by the cross-coupling between the elevation and
azimuth subsystems. The initial control input applied to
the real system is delayed by approximately 5 [s] to allow
the serial interface to be initialized in the Simulink environ-
ment. The experimental results show the dependence of the
main rotor voltage uM on the elevation angle Ψ , which has
an increasing character if Ψ < 0 and a decreasing character
if Ψ > 0. This effect is caused by the change in amplitude
of the normal force by the deviation in the elevation angle
Ψ . The dependence of the tail rotor input voltage uT on the
elevation angle Ψ is negligible. The measured data con-
firms the model of the azimuth subsystem, as the tail rotor
input voltage uT in the steady state is independent of the
azimuth angle Φ . The oscillations at the end of the exper-
iment are present in both the elevation Ψ and azimuth Φ

angles due to the interactions between the elevation and az-
imuth subsystems. These oscillations cannot be caused by
the control algorithm alone, as its design ignores interac-
tions between subsystems completely. Overall, the results
suggest the gray-box model with identified parameters is a
suitable approximation of the real system and can be con-
sidered as the digital twin.

In this case study, the proposed methodology for the
identification of nonlinear dynamic systems is verified on
a helicopter educational model. The mathematical model
of the helicopter educational model is derived using the
physics laws. The model of both rotor subsystems is substi-
tuted with a black-box model to improve its accuracy. In to-
tal, nine experiments are designed to capture the dynamics
of the real system, the data from which is used to estimate
the model parameters. The gray-box model is validated in
the control structure with the polynomial control algorithm
and instantaneous linearization. The validation is done by
comparing the gray-box model output Ψsim(t) with the out-
put of the real system Ψexp(t). The proposed control algo-
rithm is modified with the aim of its effective deployment
on a microcontroller.

4. CONCLUSIONS

The methodology for modeling and identification of
nonlinear dynamic systems is proposed in this article,
which unifies methods of analytical and experimental iden-
tification into a uniform methodology. The proposed
methodology is verified within the case study of the identi-
fication of the helicopter educational model with modified
communication interface. The contribution of the article in
this case study is in the design of an extended model of the
rotors, as the proposed model captures the dynamic prop-
erties of each rotor better compared to the model presented
in the educational manual. The design of nine specialized
experiments is presented that are mandatory for the esti-
mation of the mathematical model parameters. The data
collection required additional sensors (load cell and pho-
togate) to obtain state data for the parameter estimation of
the main and auxiliary rotor models. During the parame-
ter estimation of the mathematical model, a unique com-
bination of nonlinear methods is used to estimate the un-
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known parameters, thereby reducing the overall computa-
tional complexity. The model validation relies on the in-
direct model validation method, where a polynomial con-
trol algorithm with instantaneous linearization is designed
in several operational points. The final control algorithm
implementation in the STM32 microcontroller required the
proposed controller parameter approximation using polyno-
mials. Such implementation reduces the overall computa-

tional complexity and allows a short sampling period. The
approximation model of the helicopter educational model
presented in this case study represents a platform for the
verification of advanced control algorithms and state esti-
mation algorithms. Similarly, it presents the digital twin of
the real system, which can be used as a synthetic data gen-
erator for the training of intelligent models based on neural
networks.
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Fig. 13 Gray-box model validation - Helicopter educational model; (a) elevation angle Ψ ; (b) azimuth angle Φ ; (c) main rotor input
uM ; (d) tail rotor input uT .
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