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Underactuated systems, defined as mechanical systems with fewer The general objective of our research group is to idenfify and tackle the open
control inputs than degrees of freedom, appear in a broad range of research problems occurring at the mutual overlaps between three principal
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OUTLINE, CONTRIBUTION AND PERSPECTIVES

MATHEMATICAL MODELING OF UNDERACTUATED SYSTEMS USING LAGRANGIAN MECHANICS OPTIMAL CONTROL OF UNDERACTUATED SYSTEMS
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