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Abstract: 
In this paper is presented the SISO laboratory model of Magnetic levitation in terms of mathematic description, 
which allows verifying the different approaches of identification and control. The nonlinear simulation model of 
the Magnetic levitation based on the mathematical model of the Magnetic levitation system is described. The 
unknown parameters of the Magnetic levitation model are identifying with using the genetic algorithm or direct 
measurement on the laboratory model and validation the obtained model parameters is performed after the 
identification. In this paper are also presented the control results of Magnetic levitation simulation and laboratory 
model with using the optimal state control with integrator method and the exact feedback linearization 
input/output method.      
 

INTRODUCTION 

In this paper is presented the modeling, identification 
and control algorithm design for Magnetic levitation 
laboratory model, which is located in the Laboratory 
of Cybernetics in the Department of Cybernetics and 
Artificial Intelligence, FEI TU of Kosice. Magnetic 
levitation model is an example of nonlinear, in open 
loop unstable SISO system with fast dynamics. The 
identification of unknown parameters and control 
algorithm design is very difficult for these properties. 
The problem of the identification of the Magnetic 
levitation model was described in the [1] and [3]. 
However, the proposed identification method, which 
are presented in the [1] for determination of the 
values for various model parameters required the 
specially prepared experiments and also is necessary 
often to repeat these experiments. In order to simplify 
the process of the identification in this paper is 
proposed the genetic algorithm, which is used to 
identify of the some model parameters of the 
Magnetic levitation. The other model parameters are 
obtained by the direct measurement of the laboratory 
model. Another reason for the identification of these 
model parameters using the genetic algorithm is also 
the existence the Magnetic levitation mathematical 
model. The identification of a nonlinear model 
parameters using genetic algorithm is presented in 
[2], [4], [5].          
Some linear and nonlinear approaches were used to 
design control algorithm for Magnetic levitation 
system as a linear state control [6], an adaptive 
control [7] or an exact linearization [8]. In this paper 
are also presented the obtained results of the control 
of the simulation and laboratory model of the 
Magnetic levitation using the methods of synthesis - 
optimal state control with integrator method and 
exact feedback linearization input/output method.  

The paper is organized as follows. The Magnetic 
levitation laboratory model and its mathematical 
model are shown in the first and second part. The 
third part describes the identification process of the 
Magnetic levitation simulation model and validation 
of the obtained parameters. In the last part is 
described the control algorithm design for Magnetic 
levitation model using optimal state control with 
integrator method and exact feedback linearization 
input/output method.  

LABORATORY MODEL OF 
MAGNETIC LEVITATION 

The laboratory model of the Magnetic levitation 
(ML) is shown in the Fig. 1. It consists the education 
model of the Magnetic levitation and the laboratory 
card MF614, which is used for communication with 
the control PC. The essence of the whole system, 
with the proposed control algorithm in the control 
PC, is to keep levitate the steel ball in the air in the 
desire position by using electromagnetic force, which 
is produced from electric current going through the 
coil with soft magnetic core. 
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Fig. 1: CE 152  Magnetic levitation laboratory model  of 
Humusoft 



 

   

 
 

The Magnetic levitation education model is 
composed of the following subsystems: power 
amplified, ball and coil and inductive position sensor. 
The model is connected to the control PC via the A/D 
and D/A converters that are located on the laboratory 
card MF614, which is connected to PC via the PCI 
interface. The converters are considered as part of the 
model ML in this case (Fig. 2). 
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Fig. 2: The internal structure of the education model of the ML 
 
The input is unified signal uMU , which is transformed  
to signal u by the D/A converter, and it enters to 
power amplified, which converts it to current i. The 
current i pass through coil and thereby is generated 
electromagnetic force Fm, which acting to the ball in 
the opposite direction as gravitational force Fg. The 
ball will levitate between the coin and the sensor in 
the certain position x in the case, that the balance of 
these forces. The position of the ball x is converted to 
signal y by the inductive position sensor, which is 
transformed to unified signal yMU by the A/D 
converter.  
The proposed experiments for identification of the 
parameters of the simulation model and also 
verification of the designed control algorithms for the 
Magnetic levitation laboratory model are done in the 
programming language Matlab/Simulink using the 
Real Time Toolbox.[9]   

MATHEMATICAL MODEL OF 
MAGNETIC LEVITATION 

The each subsystems are described by the differential 
and linear equations respective.   
The mathematical model of the ball and coil 
subsystem is described by the second order nonlinear 
differential equation  
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where:  i(t)  -  electric current [A] 
 x(t)   -  ball position [m] 
 mk   -  mass of ball [kg] 
        kc   -  coil constant [A/V] 
         x0   -  coil offset [m] 
         g   -  gravity constant [m/s-2] 
 kfv   -  damping constant [N/m.s] 
 Ffv -  damping force [N]  
 Fm -  electromagnetic force [N] 
 Fg -  gravitational force [N] 
 Fa -  accelerating force [N] 
 
Position of the ball in the magnetic field is controlled 
by electric current i(t), which is generated from the 
power amplified. The power amplified is designed as 
a source of constant current, and its time constant is 
neglected with respect to system dynamics. The 
power amplified subsystem can be described by the 
following linear equation: 
 

)()( tukti i=  (2) 
 
where:  u(t)  -  input voltage [V] 
 ki   -  gain of power amplified [A/V] 
The inductive position sensor is used to determine the 
ball position, which is approximated by a linear 
equation 
 

0)()( ytxkty x +=  (3) 
 
where:  y(t)   -  sensor output voltage [V] 
 x(t)   -  ball position [m] 
         kx    -  sensor gain [V/m] 
         y0    -  sensor offset [V] 
 
The D/A converter transform the digital unified 
signal uMU from PC to analog voltage signal u and 
conversely the A/D converter transform analog 
voltage signal y to unified digital signal yMU, which is 
then processed in the PC. The behavior of the D/A 
and A/D converter can be described by the linear 
equations: 
 
D/A converter: 

0)()( utuktu MUDA +=  (4) 
A/D converter: 

0)()( MUADMU ytykty +=  (5) 
 
where:  u(t)   - D/A converter output voltage [V] 
 uMU(t) - D/A converter input voltage [MU] 
         kDA  - D/A converter gain [V/MU] 
         u0    - D/A converter offset [V] 
         yMU(t) - A/D converter output voltage  
    [MU] 
 y(t)  - A/D converter input voltage [V] 
         kAD  - A/D converter gain [MU/V] 
 yMU0 - A/D converter offset [MU] 
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Based on equations (1) to (5), which describe 
mathematical model of the Magnetic levitation 
system was programmed simulation scheme of the 
Magnetic levitation nonlinear model in the 
Matlab/Simulink language.(Fig. 3). 
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Fig. 3: The simulation scheme of the Magnetic levitation 

model 
 

The ball and coil subsystem was extended about 
LIMITY block, because of model constants have to 
vary according the ball position. [1] 

IDETIFICATION OF 
MATHEMATICAL MODEL 
PARAMETERS 

In this part is given identification of the mathematical 
model parameters of ML (Fig.3).  
The proposed simulation model of ML has 10 
parameters, of which 6 parameters (kDA, u0, kAD, yMU0, 
kx, y0) are determined by direct measurement or 
experiments on the real model and other 4 parameters 
(ki, kc, x0, kfv) are identified using a genetic algorithm. 
Subsystem parameters of the D/A and the A/D 
converters, which provide connection between model 
and control PC are directly obtained from technical 
parameters of the MF614 laboratory card. The D/A 
converter transform digital signal in the machine unit 
in the range of 5,0;0∈MUu MU to voltage signal 

10;0∈u V and therefore D/A converter gain        

kDA = 20 V/MU and offset u0 = 0V. Similarly, the 
A/D converter, which transform voltage signal in the 
range of 5;0∈y V to machine unit signal 

1;0∈MUy  MU, where then A/D converter gain   

kAD = 0,2 MU/V and offset yMU0 = 0 MU. 
For identification of the inductive position sensor 
parameters was designed experiment, in which was 
measured output signal yMU of model. The inductive 
position sensor is approximated by the linear 

function, it was sufficient to measure output signal 
values in the both of the limits of the ball position and 
then calculate corresponding sensor output voltage by 
equation (6), which was created by the substituting 
equation (3) into equation (5). 

0ykxkky ADxADMU +=  (6) 
The measured and calculated values for the 
identification of the sensor parameters are listed in 
Tab.1. 
 
Tab. 1: Measured and calculated values  

i xi [m] yMUi [-] yi [V] 
1 0 0,0034 0,017 
2 0,005 0,9375 4,6705 
 
Based on the values listed in Tab. 1, it is possible to 
calculate sensor gain and offset values: 

017,010 == yy V (7) 
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The parameters of the ball and coil subsystem, mass 
of ball mk = 8,27e-3 kg and gravity constant g = 9,81 
m/s-2. [1] 

Genetic algorithm identification of parameters of 
model 

The parameters kc - coil constant, x0 - coil offset, kfv - 
damping constant for ball and coil subsystem and ki - 
gain of power amplified for power amplified 
subsystem,  which could not directly measure on the 
laboratory model, were identified using a genetic 
algorithm (GA). The identification structure for 
parameter estimation using GA is on the Fig. 4. at the 
beginning, the estimated parameters from GA are set 
in the simulation model, which are placed in the 
string θi, where i = 1,...,M, where M denotes number 
of the strings in the one generation. The same signal 
is coming on the real model input and simulation 
model and then is compared output of the real model 
y(k) and output of the simulation model ŷ(k). The k 
denotes the time instant k = jT, where T is constant 
sample period, j = 1,...N and N is total number of the 
samples. Subsequently, based on the equation (9) and 
from generated errors ej is determined performance 
index Ji for θi string.  
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In this paper, GA is used to minimize the 
performance index Ji. For each i-th string in the one 
generation is then calculated its fitness function, 
which has the following shape: 

i
i J

fitness
1=  (10) 

The all string θi are compared to each other according 
to their fitness function fitnessi, and are selected the 
strings to the new generation, while a genetic 
crossover and mutation operations are performed 



 

   

 
 

over some of string. Thus, the new generation of the 
strings is obtained, and it must be added, that the 
selection of the new generation has higher probability 
"survive" the most successful strings, but any 
probability have also the less successful strings. This 
whole process is then repeated until required number 
of repetitions is fulfilled or tolerance between 
simulation and real model is in the desired accuracy 
(Fig. 4). [2], [10]       
             

 
 

Fig. 4: Identification structure using genetic algorithm 
 
The identification of the model parameters using GA 
was used the proposed program module for GA in the 
Matlab/Simulink language. The input parameters for 
program module are:   
• number of strings in the one generation : 50 
• number of gens in the one string : [ki, kc, x0, kfv ] 
• type of selection  : roulette wheel 
• type of crossover : one point 
• crossover probability : 0,8 
• mutation probability : 0,1 
• range of parameters for 1. generation 

max ;min : ki∈ 0,5 ; 0,2 , kc∈ 6-2,5e ; 6-1e  

x0∈ 0,009 ; 0,007 , kfv∈ 0,06 ; 0,01  

• type of completion : number of generations - 100 
The results of GA, after condition was fulfilled, are 
the following values for individual parameters: ki = 
0,3122 A/V, kc = 1,0175e-6 A/V, x0 = 0,0075 m, kfv = 
0,0838 N/m.s. The input signal used for identification 
is on the Fig. 5 and evolution process of the fitness 
function is shown in the Fig. 6.   
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Fig. 5: Input signal for identification of ML model parameters 

using GA 
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Fig. 6: Evolution process of the fitness  

 
The resulting parameters of the simulation model, 
which are used in the simulation, are shown in the 
Tab. 2: blue - direct measurement, red - genetic 
algorithm, green - unidentified parameters 
 
Tab. 2: Parameters of simulation model ML 

parameter value dimension 
kDA 20 V/MU 
u0 0 V 
kAD 0,02 MU/V 
yMU0 0 MU 

kx 390,1 V/m 
y0 0,017 V 
ki 0,3122 A/V 
kc 1,0175e-6 A/V 
x0 0,0075 M 
kfv 0,0838 N/m.s 
mk 8,27*e-3 Kg 
g 9,81 m/s-2 

Validation of ML model parameters 

The validation of the identified parameters was tested 
in the open loop with changed input signal and also in 
the feedback structure using a discrete PID controller. 
The results are time responses of the ball position of 
the simulation and real model. The time response of 
the simulation and real model in the open loop with 
new input signal (Fig. 7) is shown in the Fig. 8.  
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Fig. 7: Input signal for testing of identified parameters of ML 
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Fig. 8: Validation of simulation model of ML in the open loop 

- ouput time responses  
For testing of identified parameters of ML model in 
the feedback structure (Fig. 9) was used with the 
discrete PID controller, whose transfer function is in 
the shape 
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where z is the operator Z - transformation, Kp is 
proportional gain of controller, Ki - integral gain of 
controller, Kd - derivative gain of controller and Ts is 
sampling period. The each gain of the discrete PID 
controller was designed by experiment [1] and have 
the following values : Kp = 1, Ki = 10, Kd = 0,03, Ts = 
0,002s. 
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Fig. 9: Simulation scheme of feedback structure using discrete 

PID control for simulation and real model of ML 
The following figures are shown the time responses, 
for testing of the identified parameters in the 
feedback structure. 
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Fig. 10:  Validation of simulation model of ML in the feedback 

structure - input time responses  
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Fig. 11:  Validation of  simulation model of ML in feedback 

structure - output time responses 
 
The resulting time responses, either in the open loop 
(Fig. 7, Fig. 8) or in the feedback structure (Fig. 10, 
Fig. 11) show, that the simulation model with 
identified parameters tracks the behavior of the real 
model with sufficient accuracy, of which show the 
possibility of further use of simulation model of ML 
in the control structures using linear and nonlinear 
synthesis method. The control algorithms obtained in 
this manner can be used directly for control of the 
real model, which reduce time of control design and 
also decreasing probability of some fault of the real 
model.  

CONTROL DESIGN OF ML MODEL 
BASED ON LINEAR/NONLINEAR 
METHOD OF SYNTHESIS 

In this part of the paper is described the basic 
principle or a brief description of a control 
algorithms, which has been proposed and verified on 
the simulation model and then on the ML laboratory 
model. The optimal state control with integrator 
method and exact feedback linearization input/output 
method are presented for control algorithm design for 
Magnetic levitation model with the purpose of 
tracking the reference trajectories.  
The both of used methods assume a model written in 
the state space form in the shape:    
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where nRtx ∈)(  is state vector, u(t) is control input, 

y(t) is system output,  f(x(t)) and h(x(t)) are smooth 
nonlinear function. Therefore, based on equations (1) 
to (5) was created nonlinear state space form, which 
describes the dynamics of the ML laboratory model, 
in the shape : 
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where state vector is x(t) = (x1(t), x2(t)) = (x(t), ẋ(t)), 
input u(t) = uMU(t) and output y(t) = yMU(t). For better 
overview, further will not write dependence of 
variables on the time t.  

Linear method of synthesis - optimal state control 
with integrator 

The discrete state space form of the linear system is 
used for discrete optimal state control with integrator 
design (LQI control) in the shape 
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where is necessary propose control in the shape  
[ ])()()()( kxkxKkxKku iLQILQILQI −=−=  (15) 

which minimizes the functional form 
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Where M is integer, KLQI is gain vector, QLQI, RLQI are 
weighting matrices and the output of integrator xi(k) 
is calculated by equation 

))()(()()1( kykwTkxkx sii −+=+  (17) 
where Ts is sampling period. The control structure for 
using optimal state control with integrator is in the 
Fig. 12. [11]  

 
 

Fig. 12: The control structure for using LQI control 
 
The transformation of the nonlinear equations (13) 
into Taylor series around the chosen operating point 
x10 = 0,0025m, x20 = 0, uMU0 = 0,2261MU was 
obtained the state space form of the linear model, 
which approximates the dynamics of the ML 
laboratory model. The Matlab function c2d() was 
used for obtain the discrete state space form (14), 
when sampling period was Ts = 0,002s.  
The Matlab function lqi() was used for actual control 
algorithm design. If the input into function lqi() are 
matrices of the discrete state space form (14) and the 
weighting matrices in the shape QLQI = [0 0 0;0 0 0;0 
0 1000], RLQI = 10, then the result from function are 
gain vector KLQI and the feedback loop roots root_uro 
in the shape   
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The discrete Kalman estimator was used for the 
estimate of the ML simulation and laboratory model 
states, which is necessary to know for optimal state 
control. The discrete Kalman estimator was proposed 
using the Matlab function kalman(). The input into 
function kalman() are matrices of the discrete state 
space form (14) and the weighting matrices Qest, Rest 
and output of function is estimator gain vector L and 
estimator roots. For the proposal of the estimator 
were chosen the weighting matrices Qest = 100000 
and Rest = 0,01 and then estimator gain vector L has 
the following values:   
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The control structure for testing the proposed optimal 
state control with integrator to control the ML 
simulation and laboratory model with purpose of to 
ensure the desired position of ball in the magnetic 
field of the coil is in the Fig. 13.   

 
Fig. 13:  Simulation scheme of  control structure with LQI 

control for ML simulation/laboratory model 
 
The time responses of the inputs and resulting outputs 
of tracking of reference trajectories with using the 
proposed method of the linear synthesis are in the 
Fig. 14 (a, b) and Fig. 15 (a, b).  
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a) control input 
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b) model output 
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Fig. 14:  Time responses of the ML simulation and laboratory 

model with using LQI control  
 

a) control input 
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b) model output 
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Fig. 15: Time responses of the ML simulation and laboratory 

model with using LQI control 
 
 
 

Nonlinear method of synthesis – Exact feedback 
linearization input/output method 

The exact feedback linearization input/output method 
is one of the structural nonlinear methods of the 
synthesis. This method based on the idea to 
compensate nonlinearities in the system (12) by 
adding nonlinear transformation (input and state) thus 
that the resulting system will be as a linear to respect 
to a new input v and output y and can be described by 
a linear state space form in the shape  
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Then, for this linear model (20) is possible to propose 
the control algorithm using a suitable linear method 
of synthesis (Fig. 16). 
  

 
 

Fig. 16:  Control structure for exact feedback linearization 
input/output method 

 
The principle of the exact feedback linearization 
input/output method is based on repeatedly derivative 
of the output y of the nonlinear state space form (12) 
until a dependence on the input signal u. The number 
of derivation indicates a relative order of the system 
r. If relative order r equal the order of system n, then 
the transformation of system (12) is completed and is 
possible to define a state transformation z = z(x) in the 
shape    
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If the substitution yr = v, the input transformation u =  
u(x,v) has the following shape   
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where α, β are nonlinear function. The detailed 
description of the exact feedback linearization 
input/output method can be found in [12], [13]. 
The nonlinear state space form of the ML laboratory 
model (13) used for the applying of the exact 
feedback linearization input/output method was 
rewritten for better overview and has the following 
shape   
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where 
k

DAi
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The next step is derivative of the system output y 
until dependence on the input signal u, and then is 
possible to define the state and input transformation. 
The proposed program module for exact feedback 
linearization input/output algorithm was used for 
determine the required transformation in the 
Matlab/Simulink language [14]. After application the 
program module for ML model (23), the state and 
input transformation have the following shape 
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After application of the state transformation (24) and 
input transformation (25) is possible rewrite the 
nonlinear model (23) into the following linear form 
(20) in the shape 
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Based on the state space form (26), which was 
transformed into the discrete form by the Matlab 
function c2d() with sampling period Ts = 0,002s, was 
designed the discrete control algorithm using the 
optimal state control with integral in the shape 

[ ])()()()( kzkzKkzKkv iELEL −=−=  (27) 
If the weighting matrices QEL = [28 0 0;0 0,01 0;0 0 
5500], REL = 5e-7, then the gain vector KEL and 
feedback loop roots root_uro have the following 
shape 
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The discrete Kalman estimator (19) was used for the 
estimate of the ML simulation and laboratory model 
states. The control structure for testing the proposed 
control using exact feedback linearization 
input/output method to control the ML simulation and 
laboratory model with purpose of to ensure the 
desired position of ball in the magnetic field of the 
coil is in the Fig. 17. 
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Fig. 17: Simulation scheme of  control structure for  exact 

feedback linearization input/output method for 
ML simulation and laboratory model 

 
The resulting time responses of the tracking the 
reference trajectories with using the proposed 
nonlinear synthesis are in the Fig.18(a, b) and Fig.19 
(a, b).   
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b) model output 
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Fig. 18: Time responses of the ML simulation and laboratory 

model with using exact feedback linearization 
input/output method – square trajectory     
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b) model output 
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Fig. 19: Time responses of the ML simulation and laboratory 

model with using exact feedback linearization 
input/output method – sinus trajectory     

EVALUATION OF OBTAINED 
CONTROL RESULTS  

For evaluation of results of the proposed control 
algorithms for control ML simulation and laboratory 
model was used the IAE criterion (Integral of 
Absolute value of Error), which is defined by the sum 
of errors in the shape   

∑
=

=
M

k

keS
1

)(  (29) 

The resulting values of the chosen criterion of ML 
simulation and laboratory model for control 
algorithms (exact linearization method, optimal state 
control with integrator) are shown in the Tab. 3 and 
Tab. 4. 
 
Tab. 3: IAE criterion – square trajectory    

square trajectory simulation ML laboratory ML 

Exact 
linearization 

317,4156 325,1815 

LQI 200,1723 212,9896 

 
Tab. 4: IAE criterion – sinus trajectory   

sinus 
 trajectory 

simulation ML laboratory ML 

exact 
linearization 

322,5194 313,5943 

LQI 207,0827 217,7103 

 
From the resulting values from Tab. 3 and Tab. 4 and 
also from the resulting time responses (Fig. 14, Fig. 
15, Fig. 18, Fig. 19) show, that the proposed optimal 
state control with integrator to ensure better tracking 
the reference trajectories with limits 7,0;3,0 MU. 

The time responses are on the Fig. 20, which were 
obtained of control of the ML laboratory model with 
using the proposed control algorithms (exact 
linearization method, optimal state control with 
integrator, PSD velocity algorithm) with purpose of 

tracking the square trajectory reference with 
increased range 88,0;08,0 MU.     
Tab. 5: IAE criterion with increased range – square trajectory 

laboratory ML square trajectory 

exact linearization 261,9644 

LQI control 329,1399 

PSD  333,4730 

 
In the Tab. 5 are shown the resulting values of the 
chosen criterion for ML laboratory model, for control 
algorithms (exact linearization method, optimal state 
control with integrator, PSD velocity algorithm.) and 
defined reference square trajectory with increased 
range.  

a) exact linearization 
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b) LQI control 
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c) PSD velocity algorithm 
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Fig. 20: Time responses of the ML laboratory model with using 

the proposed control algorithms - a) exact 
linearization, b) LQI control, c) PSD velocity 
algorithm. 



 

   

 
 

From the resulting values from Tab. 5 and also from 
the resulting time responses (Fig. 20 a, b, c) show, 
that the proposed control algorithm with using exact 
feedback linearization input/output method to ensure 
tracking the defined reference trajectories in the both 
limits.    
Therefore, it can be said, that the proposed control 
with using the exact feedback linearization 
input/output method has better results in the whole 
operating range of the laboratory model of Magnetic 
levitation.  
The further research will focus on the control 
algorithm design using nonlinear methods, where will 
be used the obtained simulation model of the 
Magnetic levitation and also the obtained knowledge 
from identification by genetic algorithm will be used 
for modeling and identification of nonlinear model.   
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