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Abstract — The papers presents an implementation of the 

predictive state space control algorithm, called Model Predictive 

Control (MPC). This control algorithm is verified on the Ball and 

Plate laboratory model, called B&P_KYB, for the reference 

trajectory tracking. The control algorithm is first verified using 

the derived nonlinear simulation model in Matlab/Simulink. 

Since simulation results are acceptable, an experiment is realized 

on the real laboratory model. The results of the experiment are 

demonstrated as the time response of the ball position and the 

voltage. 

Keywords— model predictive control, MPC, mechatronic 

system, Ball and Plate 

I.  INTRODUCTION 

Model Predictive Control (MPC) is a modern method of 
nonlinear dynamic system control. MPC algorithm design for 
the nonlinear dynamic systems is discussed in publications 
such as [1], [2]. The application of the MPC algorithm to the 
different models of the dynamic systems is presented e.g. in 
articles [3], [4]. 

This papers presents the verification of the designed MPC 
control algorithm of the laboratory model B&P_KYB (Ball and 
plate system), which is located in the Laboratory of the 
Mechatronic Systems V142, Department of Cybernetics and 
Artificial Intelligence (DCAI), Faculty of Electrical 
Engineering and Informatics, Technical University of Košice, 
(http://kyb.fei.tuke.sk/ laboratoria/miest/V142.php). 

At the DCAI, predictive control algorithms have been used 
for the control of laboratory models Helicopter Humusoft CE 
150 [7] and Hydraulic system [8]. Another laboratory model at 
the DCAI is the Ball and Plate model, Humusoft CE 151. 
Implementation of the MPC and other optimal state space 
algorithms to Ball and Plate model Humusoft CE 151 was 
unsuccessful, which was caused by inaccuracies in the design 
of the mathematical model this system. The main objective of 
these papers is to design and to verify the MPC algorithm using 
the laboratory model B&P_KYB (ball and plate model) [11]. 

The components and construction of the laboratory model 
B&P_KYB are different from those of the model Ball and Plate 
- Humusoft CE 151. A web camera is used to capture the ball 
position in the laboratory model B&P_KYB and the algorithm 
for image processing is designed and implemented to acquire 

the image. The tilt of the plate is controlled by two 
servomotors, which communicate with control PC by single – 
microchip computer (more information about differences from 
the model Ball and Plate Humusoft CE 151 can be found in 
[12]). Mathematical description of the B&P_KYB model is 
based on the analytical identification with respect of physical 
laws (experimental identification of the B&P_KYB model is 
presented in [11]). The exact mathematical model enables to 
implement state space control algorithms, such as the MPC 
algorithm for the laboratory model B&P_KYB.  

The designed MPC algorithm is verified using the 
nonlinear simulation model B&P_KYB in a control experiment 
for the reference trajectory tracking. After the required results 
achieved at the nonlinear simulation model B&P_KYB, was the 
MPC algorithm verified on the real laboratory model. The 
results of the simulations are presented in the time response 
form for the chosen variables, such as the ball position and 
reference angle of the laboratory model. 

II. MODEL BASED PREDICTIVE CONTROL ALGORITHM WITH 

LINEAR PREDICTOR 

Model Predictive Control (MPC) is the state predictive 
control algorithm, suitable for the control of the fast. unstable 
dynamic systems in the SISO or MIMO form [6]. This paper 
focuses on the implementation of the MPC algorithm for SISO 
systems. 

In general, predictive control algorithms minimize the 
following functional: 
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where Q, R are weight matrices, Np is horizon of the prediction 
and Nu is horizon of the control, k is number of sample (k = 1, 
2, 3, ...). 

The presented MPC algorithm uses a linear predictor for 
computing the prediction of state variables on the horizon Np, 
according to [5]. To derivate of the linear predictor, it is 
important to specify a model of the dynamic system. If the 
model of the dynamic system is obtained by analytical 
identification, the result of the identification is the system of 
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the nonlinear differential equations. Next, the linear predictor is 
defined by linearizing the nonlinear differential equations. The 
result of the linearization is the linear model of the nonlinear 
dynamic system in the state space form: 


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while F is matrix of system dynamics (nx x nx), G is input 
matrix (nx x nu) and C

T
 is output matrix (ny x nx). 

The derivation of the system states predictor and output 
predictor with respect to the prediction horizon Np is described 
in [5], [6]. Linear predictor in matrix form based on the state 
space description of the system (2) is defined as: 


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where the vector of predicted values is 

 TpNkykykyy )1()1()(ˆ   , vector of control 

predicted values is  Tpk Nkukukuu )1()1()(    

and the vector of the reference trajectory from step k is 

 Tpk Nkwkwkww )1()1()(   . 

In the definition of the linear predictor in the matrix form (3), 

V0x(k) represents the free response of the system and S0 ku  

represents the forced response of the system. 

The matrices of free response V0 and forced response S0 of the 
system have form: 
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If predictor (3) is substituted into the functional (1), we obtain 
the predictor in form: 
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based on the derivation of the vectors according to [6], yields 
the optimal control law in the final form: 
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Optimal control law 
ku  for the B&P_KYB laboratory model is 

computed by optimalization methods based on quadratic 
programming, which are implemented in the Matlab 
enviroment as the function quadprog (Optimization Toolbox). 

Optimal control law 
ku  with constraints is given by the 

minimization of the relation: 
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while H (Hessian) and  g (gradient) are defined as follows: 
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The value of the control horizon Nu affects the size of the free 
response matrix S0 if the matrix S0 is multiplied from the right 
by the matrix:  
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The size of matrix IS is )()( puuu NmNm  , where mu is the 

length of control vector
 ku . 

The equations (5), (6) are fundamental for the design of 
MPC algorithm with linear predictor which computes the 
control input for the dynamic system. The general scheme of 
the MPC algorithm is shown on Fig. 1. 

 

Fig. 1. Block scheme of the MPC algorithm  

III. IMPLEMENTATION OF MODEL PREDICTIVE CONTROL TO 

LABORATORY MODEL B&P_KYB 

The nonlinear simulation model of the B&P_KYB system 
(Fig. 2) was obtained by analytical identification based on 
relevance law of physics. 

M. Oravec and A. Jadlovská • Model Predictive Control of a Ball and Plate Laboratory Model

166



 

Fig. 2. Block scheme of the simulation B&P_KYB model in Simulink 

The model was broken down into two subsystems, as the 
Servomotors subsytem and the B&P subsystem, shown in Fig. 
3.  

 
Fig. 3. Block scheme of the mechatronical laboratory model B&P_KYB 

B&P subsystem is described by two nonlinear differential 
equations. Nonlinear differential equation for axis x is:    
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and for axis y: 
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Subsystem Servomotors is described by two linear differential 
equations. Linear differential equation for x axis is:  
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and for y axis is: 
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Physical variables and parameters of the nonlinear model are 
listed in Table 1. 

TABLE I.  PARAMETERS AND PHYSICAL VARIABLES 

 Description Label Units 

physical 

variables 

ball position – x axis  yx(t) [m] 

ball position – y axis yy(t) [m] 

plate tilt – x axis α(t) [rad] 

reference angle – x axis αx(t) [rad] 

plate tilt – y axis β(t) [rad] 

reference angle – y axis βy(t) [rad] 

parameters 

servomotor gain – x axis Ksx - 

servomotor time constant 
– x axis 

Tsx - 

servomotor gain – y axis Ksy - 

servomotor time constant 
– y axis 

Tsy - 

 

The time responses to the same step input signal for the 
nonlinear simulation and real laboratory model are compared in 
Fig. 4. 

 

 
Fig. 4. Comparison of the simulation and  real model open loop response  
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Comparison of models responses depicted in Fig. 4 shows that 
the behavior of the nonlinear simulation model is very similar 
to the laboratory model of B&P_KYB. This assumption allows 
us to use the B&P_KYB simulation model for verification of 
the MPC control algorithm. 

To define the linear predictor, it is important to specify the 
linear state space form (3) of the B&P_KYB simulation model. 
The vector of the state variables is specified as (axis x): 
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The input vector has the form: 
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The selected linearization point of the system is equivalent to 
the equilibrium point, whose values are 

]000[ 321  xxxxXEP . The matrix of system dynamics 

could be defined by the Jacobi matrix: 
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The input matrix is defined as: 
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The process of defining the state space description of the 
system for the direction of the y axis is the same for the x axis. 
The output matrices for both directions are specified as 

 001 T

y

T

x CC  [12]. 

Synthesis of the MPC control algorithm with a linear predictor 
is based on the discrete state space form (2). Transformation 
from the continuous (matrices A, B) to the discrete form 
(matrices F, G) is done by the Matlab function c2d with the 
sample period Ts = 0.05 s. 

IV. DESIGN OF MPC ALGORITHM FOR LABORATORY MODEL 

B&P_KYB 

The design of the MPC algorithm for the laboratory model 
B&P_KYB is described in the flowchart form, in Fig. 5. 

 
Fig. 5. The designed flow chart of the MPC algorithm 

According to the flowchart (Fig. 5), MPC algorithm has 
been implemented as the paramMpcC function in the Matlab 
environment. The description of input and output parameters of 
the paramMpcC function is as follows: 

[H, gT, S, V, A_obm, dU, options] = paraMpcC(F, G, C, D, Q, 
R, Np, Nu, k) 

H – Hessian matrix specified in equation (6) 

gT – gradient matrix specified in equation (6) 

S – matrix of forced response (S0) 

V – matrix of free response (V0) 

A_obm – matrix of the model constraints 

dU – minimum of the control different 

options – options for quadprog function  

F – matrix of system dynamics in the discrete form 

G – matrix of system input in the discrete form  

C – transposed matrix of the system output 

D – feedforward matrix 

Q – weight matrix for state variables in functional 

R – weight matrix for system input in functional 

Np – value of the prediction horizon 

Nu – value of the control horizon 

M. Oravec and A. Jadlovská • Model Predictive Control of a Ball and Plate Laboratory Model

168



k – vector of the model parameters 

The paramMpcC function can be used for computing the 
Hessian H, gradient g, free response matrix (V0) and forced 
response matrix (S0). The paramMpcC function returns all 
matrices and parameters which are important for the function 
quadprog. 

The designed MPC algorithm is used for predictive control 
design of the B&P_KYB laboratory model. The control 
algorithm is verified for the circle or square reference trajectory 
tracking including constraints. The MPC control structure for 
the simulation is shown in Fig. 6. Simulation parameters are 
listed in Table II. Simulation results for reference trajectory 
tracking are illustrated in Fig. 8, Fig. 10. The result of the 
simulation shows that the MPC algorithm fulfills the 
requirements of the control quality for the chosen objective. 
The MPC algorithm was compared to the optimal state control 
algorithm (LQ) and has shown better results of the simulation 
for the reference trajectory tracking than the LQ algorithm. The 
simulation results of LQ algorithm are listed in [11]. Fig. 9 and 
Fig. 11 show that MPC control of the laboratory model 
B&P_KYB is smooth, which is very important for the criteria 
of quality. 

TABLE II.  SIMULATION PARAMETERS 

Description Label Value Units 

simulation time T 20 [s] 

sample period dT 0,05 [s] 

prediction horizon Np 20 samples 

control horizon Nu 1 samples 

 

The comparison of the effect of MPC control algorithm on 
the nonlinear simulation and laboratory model B&P_KYB in 
simulation with the MPC is illustrated in Fig. 10. The MPC 
algorithm is very suitable for the mechatronic systems with the 
fast dynamics. 

 
Fig. 6. Control scheme for reference trajectory tracking with using the MPC 

algorithm 

To improve the experiments with the nonlinear simulation 
laboratory model B&P_KYB, we developed GUI application 
called VirtModelsKKUI, shown in Fig. 7. This application 
includes different types of control algorithms together with a 
developed 3D virtual laboratory model [13]. 

 

Fig. 7. GUI of the created application VirtModelsKKUI 

 
Fig. 8. Response of the ball position - square trajectory tracking 

 
Fig. 9. Response of the control input - square trajectory tracking 

169

SAMI 2015 • IEEE 13th International Symposium on Applied Machine Intelligence and Informatics • January 22-24, 2015 • Herl’any, Slovakia



 
Fig. 10. Comparison of the nonlinear simulation (NL) and  laboratory model 

(REAL) reference trajectory tracking – circle trajectory 

 
Fig. 11. Response of the control input - circle trajectory tracking (nonlinear 

simulation model) 

V. CONCLUSION 

The presented MPC algorithm has been implemented in the 
Matlab environment and verified for the B&P_KYB laboratory 
model control.  

Designed predictive control algorithm for the laboratory 
model B&P_KYB is used for the reference trajectory tracking. 
Circle and square was chosen reference trajectories. The 
simulation results of the nonlinear simulation laboratory model 
have the required quality. Control is smooth, without strong 
oscillations, which is very important for the lifetime of 
servomotors. Used MPC control algorithm had a very good 
quality in control of the real laboratory model B&P_KYB, too. 
It can be concluded that the MPC control algorithm is a 
suitable predictive control algorithm for this type of dynamic 
systems. 

Some of the results of the MPC algorithm design and 
implementation with application VirtModelsKKUI will be use 

in the subject Control & Artificial Intelligence (web page: 
http://matlab.fei.tuke.sk/raui). 
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