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Abstract — The papers presents an implementation of the
predictive state space control algorithm, called Model Predictive
Control (MPC). This control algorithm is verified on the Ball and
Plate laboratory model, called B&P_KYB, for the reference
trajectory tracking. The control algorithm is first verified using
the derived nonlinear simulation model in Matlab/Simulink.
Since simulation results are acceptable, an experiment is realized
on the real laboratory model. The results of the experiment are
demonstrated as the time response of the ball position and the
voltage.
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I. INTRODUCTION

Model Predictive Control (MPC) is a modern method of
nonlinear dynamic system control. MPC algorithm design for
the nonlinear dynamic systems is discussed in publications
such as [1], [2]. The application of the MPC algorithm to the
different models of the dynamic systems is presented e.g. in
articles [3], [4].

This papers presents the verification of the designed MPC
control algorithm of the laboratory model B&P_KYB (Ball and
plate system), which is located in the Laboratory of the
Mechatronic Systems V142, Department of Cybernetics and
Artificial Intelligence (DCAI), Faculty of Electrical
Engineering and Informatics, Technical University of Kosice,
(http://kyb. fei.tuke.sk/ laboratoria/miest/V142.php).

At the DCAI, predictive control algorithms have been used
for the control of laboratory models Helicopter Humusoft CE
150 [7] and Hydraulic system [8]. Another laboratory model at
the DCAI is the Ball and Plate model, Humusoft CE 151.
Implementation of the MPC and other optimal state space
algorithms to Ball and Plate model Humusoft CE 151 was
unsuccessful, which was caused by inaccuracies in the design
of the mathematical model this system. The main objective of
these papers is to design and to verify the MPC algorithm using
the laboratory model B&P KYB (ball and plate model) [11].

The components and construction of the laboratory model
B&P KYB are different from those of the model Ball and Plate
- Humusoft CE 151. A web camera is used to capture the ball
position in the laboratory model B&P KYB and the algorithm
for image processing is designed and implemented to acquire
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the image. The tilt of the plate is controlled by two
servomotors, which communicate with control PC by single —
microchip computer (more information about differences from
the model Ball and Plate Humusofi CE 151 can be found in
[12]). Mathematical description of the B&P KYB model is
based on the analytical identification with respect of physical
laws (experimental identification of the B&P KYB model is
presented in [11]). The exact mathematical model enables to
implement state space control algorithms, such as the MPC
algorithm for the laboratory model B&P_KYB.

The designed MPC algorithm is verified using the
nonlinear simulation model B&P KYB in a control experiment
for the reference trajectory tracking. After the required results
achieved at the nonlinear simulation model B&P KYB, was the
MPC algorithm verified on the real laboratory model. The
results of the simulations are presented in the time response
form for the chosen variables, such as the ball position and
reference angle of the laboratory model.

II. MODEL BASED PREDICTIVE CONTROL ALGORITHM WITH
LINEAR PREDICTOR

Model Predictive Control (MPC) is the state predictive
control algorithm, suitable for the control of the fast. unstable
dynamic systems in the SISO or MIMO form [6]. This paper
focuses on the implementation of the MPC algorithm for SISO
systems.

In general, predictive control algorithms minimize the
following functional:

Jure = S 0Ok +1) = wik + D +3 ROk +i-DI, (1)

i=1 i=l

where Q, R are weight matrices, N, is horizon of the prediction
and N, is horizon of the control, £ is number of sample (k =1,
2,3,..).

The presented MPC algorithm uses a linear predictor for
computing the prediction of state variables on the horizon N,
according to [5]. To derivate of the linear predictor, it is
important to specify a model of the dynamic system. If the
model of the dynamic system is obtained by analytical
identification, the result of the identification is the system of
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the nonlinear differential equations. Next, the linear predictor is
defined by linearizing the nonlinear differential equations. The
result of the linearization is the linear model of the nonlinear
dynamic system in the state space form:

x(k +1) = F x(k) + Gu(k)
y(k)=C"x(k)

2

while F is matrix of system dynamics (n, x n,), G is input
matrix (n, x n,) and C” is output matrix (1, X ).

The derivation of the system states predictor and output
predictor with respect to the prediction horizon N, is described
in [5], [6]. Linear predictor in matrix form based on the state
space description of the system (2) is defined as:

P=V, x(k)+S,u, » (3)
where the vector of  predicted values is
p= [y(k) vk +1) vk + N, - 1)]T , vector of control
predicted values is y, = [u(k) u(k +1) u(k+N, —1)]’

and the vector of the reference trajectory from step k is
we = [w(k) wik+1) wik+N, -] -
In the definition of the linear predictor in the matrix form (3),
Vox(k) represents the free response of the system and Spu,
represents the forced response of the system.

The matrices of free response V) and forced response S, of the
system have form:

C D 0 0
v,=| + |, s,=| CFG ¢G D :
CF" : .0
cF™'G CFG CG D

If predictor (3) is substituted into the functional (1), we obtain
the predictor in form:

Jupe = Vo x(k) + Sy u, —wy )TQ(VO x(k)+Syu, —w)+
+u] Ru,

“

a‘]MPC ;0
Uy
based on the derivation of the vectors according to [6], yields

the optimal control law in the final form:

Minimization of functional (4) with the condition

u, =—(G"'QG+R) (G"O(Vx(k)—w,))

Optimal control law u, for the B&P KYB laboratory model is
computed by optimalization methods based on quadratic
programming, which are implemented in the Matlab
enviroment as the function quadprog (Optimization Toolbox).
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Optimal control law u, with constraints is given by the
minimization of the relation:

nlln(%u{Huk +gTuk )’ Mmin Suk SMmax ’ (5)
while H (Hessian) and g (gradient) are defined as follows:
H=S5,08,+R gT :(yk_wk)TQSO (6)

The value of the control horizon N, affects the size of the free
response matrix S if the matrix Sy is multiplied from the right
by the matrix:

1 0 0
1
0 1
I = 1
0
1
0 0 1

The size of matrix Igis(m, N,)x(m,-N,), where m, is the
length of control vector u, .

The equations (5), (6) are fundamental for the design of
MPC algorithm with linear predictor which computes the
control input for the dynamic system. The general scheme of
the MPC algorithm is shown on Fig. 1.

———w(k)—{ computing the
optimal control

input

K  SYSTEM  [y(k)»

|—§(k)—b

State space
predictor

Y

x(k)
Fig. 1. Block scheme of the MPC algorithm

III. IMPLEMENTATION OF MODEL PREDICTIVE CONTROL TO
LABORATORY MODEL B&P_KYB

The nonlinear simulation model of the B&P KYB system
(Fig. 2) was obtained by analytical identification based on
relevance law of physics.



SAMI 2015 « IEEE 13th International Symposium on Applied Machine Intelligence and Informatics  January 22-24, 2015 « Herl'any, Slovakia

alphait)

reference angle alpha limits
of alpha input gain of servo -

axis x

betalt)

gain of servo -
axis y

bounce - axis x

gravity with coef -
axis x

output - coordinate x

gravity with coef -
axis y

cutput - coordinate y

Fig. 2. Block scheme of the simulation B&P_KYB model in Simulink

The model was broken down into two subsystems, as the
Servomotors subsytem and the B&P subsystem, shown in Fig.
3.

Model B&P_KYE

. (t) [rad] a(t) [rad] V. (1) [m]
Input: Subsystem rotation Subsystem OQutput:
reference angle Servomotors of B&P ball position
plate
e Era% t) [rad] v, (1) [m]>

Fig. 3. Block scheme of the mechatronical laboratory model B&P KYB

B&P subsystem is described by two nonlinear differential
equations. Nonlinear differential equation for axis x is:

5.0 =2 gsina(o) ™

and for axis y:

5, (0= gsin () ®)

Subsystem Servomotors is described by two linear differential
equations. Linear differential equation for x axis is:

a(t) = IT< (a, () —-alt)) ©)
and for y axis is:
. K
PO =228, pe) (10)

sy

Physical variables and parameters of the nonlinear model are
listed in Table 1.
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TABLE 1. PARAMETERS AND PHYSICAL VARIABLES
Description Label Units
ball position — x axis W(t) [m]
ball position — y axis () [m]
physical plate tilt — x axis o(t) [rad]
variables reference angle — x axis 0x(1) [rad]
plate tilt — y axis p) [rad]
reference angle — y axis Lu(®) [rad]
servomotor gain — x axis K -
servomotor time constant T )
— X axis '“
parameters
servomotor gain — y axis K, -
servomotor time constant T )
—y axis ¥

The time responses to the same step input signal for the
nonlinear simulation and real laboratory model are compared in
Fig. 4.

Step response of sirmulation and real model B&P_KYB
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Fig. 4. Comparison of the simulation and real model open loop response
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Comparison of models responses depicted in Fig. 4 shows that
the behavior of the nonlinear simulation model is very similar
to the laboratory model of B&P KYB. This assumption allows
us to use the B&P_KYB simulation model for verification of
the MPC control algorithm.

To define the linear predictor, it is important to specify the
linear state space form (3) of the B&P KYB simulation model.
The vector of the state variables is specified as (axis x):

x,(®) y. (@) position [m)
() =| x,(t) |=| ¥,(t) | =| velocity [m-s™']
x;(1) a(t) angle [rad]

The input vector has the form:

u(t) =[a, ()]

The selected linearization point of the system is equivalent to
the equilibrium point, whose values are
Xygp =[x, =0 x,=0 x;=0]. The matrix of system dynamics
could be defined by the Jacobi matrix:

o U Y
axl éxz 8x3 0 1 0
PN 27 R P R
ox, ox, Ox, % ¢ 7
9 o 9 00 -
_8x1 sz 6X3_XXEP SX dxygp
The input matrix is defined as:
o
Ou 0
5|2 o
’ Ou
% 1 XXEP
ou

Xxep

The process of defining the state space description of the
system for the direction of the y axis is the same for the x axis.
The output matrices for both directions are specified as
cl=cl=[t o o][12].

Synthesis of the MPC control algorithm with a linear predictor
is based on the discrete state space form (2). Transformation
from the continuous (matrices 4, B) to the discrete form
(matrices F, G) is done by the Matlab function ¢2d with the
sample period 7, = 0.05 s.

IV. DESIGN OF MPC ALGORITHM FOR LABORATORY MODEL
B&P _KYB

The design of the MPC algorithm for the laboratory model
B&P _KYB is described in the flowchart form, in Fig. 5.
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Fig. 5. The designed flow chart of the MPC algorithm

Graph of output

According to the flowchart (Fig. 5), MPC algorithm has
been implemented as the paramMpcC function in the Matlab
environment. The description of input and output parameters of
the paramMpcC function is as follows:

[H, gT, S, V, A obm, dU, options] = paraMpcC(F, G, C, D, O,
R, Np, Nu, k)

H — Hessian matrix specified in equation (6)

gT — gradient matrix specified in equation (6)

S — matrix of forced response (Sy)

V — matrix of free response (V)

A_obm — matrix of the model constraints

dU — minimum of the control different

options — options for quadprog function

F — matrix of system dynamics in the discrete form
G — matrix of system input in the discrete form

C — transposed matrix of the system output

D — feedforward matrix

Q — weight matrix for state variables in functional
R — weight matrix for system input in functional
Np — value of the prediction horizon

Nu — value of the control horizon



SAMI 2015 « IEEE 13th International Symposium on Applied Machine Intelligence and Informatics  January 22-24, 2015 « Herl'any, Slovakia

k — vector of the model parameters

The paramMpcC function can be used for computing the
Hessian H, gradient g, free response matrix (V) and forced
response matrix (Sy). The paramMpcC function returns all
matrices and parameters which are important for the function
quadprog.

The designed MPC algorithm is used for predictive control
design of the B&P KYB laboratory model. The control
algorithm is verified for the circle or square reference trajectory
tracking including constraints. The MPC control structure for
the simulation is shown in Fig. 6. Simulation parameters are
listed in Table II. Simulation results for reference trajectory
tracking are illustrated in Fig. 8, Fig. 10. The result of the
simulation shows that the MPC algorithm fulfills the
requirements of the control quality for the chosen objective.
The MPC algorithm was compared to the optimal state control
algorithm (LQ) and has shown better results of the simulation
for the reference trajectory tracking than the LQ algorithm. The
simulation results of LQ algorithm are listed in [11]. Fig. 9 and
Fig. 11 show that MPC control of the laboratory model
B&P KYB is smooth, which is very important for the criteria
of quality.

TABLE IL SIMULATION PARAMETERS
Description Label Value Units
simulation time T 20 [s]
sample period dT 0,05 [s]
prediction horizon Np 20 samples
control horizon Nu 1 samples

The comparison of the effect of MPC control algorithm on
the nonlinear simulation and laboratory model B&P KYB in
simulation with the MPC is illustrated in Fig. 10. The MPC
algorithm is very suitable for the mechatronic systems with the
fast dynamics.

Wy, y(K) - reference trajectory

a x(K), By(K) - reference angle
¥, y(k) = output {ball position)

Xy, y(K) - State space variables

B&P subsystem

Subsystem - axis x

— W (k)P
predictive controller [—a,(k)# servomotor [~a(k)W B&P -

axis x 1
Yx(K)
’—. |

oK)

Subsystem - axis y

—w, (k) | B&P |
! predictive contreller [~ By(K)I| servomotor —R(KIMY 5,

xy(K)

Fig. 6. Control scheme for reference trajectory tracking with using the MPC
algorithm
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To improve the experiments with the nonlinear simulation
laboratory model B&P_KYB, we developed GUI application
called VirtModelsKKUI, shown in Fig. 7. This application
includes different types of control algorithms together with a
developed 3D virtual laboratory model [13].

B P - Semalation f Ball B e ==

A

[ e gor view psen oo

FECOIDEEY

Desktop  Window  Help

L3 0@

Fig. 7. GUI of the created application VirtModelsKKUI

Time response of the ball position - B&P_KYB
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Fig. 8. Response of the ball position - square trajectory tracking

Time response of the control input - B&P_KYB
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Fig. 9. Response of the control input - square trajectory tracking
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Time response of the ball position - B&P_KYEB
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Fig. 10. Comparison of the nonlinear simulation (NL) and
(REAL) reference trajectory tracking — circle trajectory

laboratory model

Time response of the control input - B&FP_KYB
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Fig. 11. Response of the control input - circle trajectory tracking (nonlinear
simulation model)

V. CONCLUSION

The presented MPC algorithm has been implemented in the
Matlab environment and verified for the B&P_KYB laboratory
model control.

Designed predictive control algorithm for the laboratory
model B&P _KYB is used for the reference trajectory tracking.
Circle and square was chosen reference trajectories. The
simulation results of the nonlinear simulation laboratory model
have the required quality. Control is smooth, without strong
oscillations, which is very important for the lifetime of
servomotors. Used MPC control algorithm had a very good
quality in control of the real laboratory model B&P_KYB, too.
It can be concluded that the MPC control algorithm is a
suitable predictive control algorithm for this type of dynamic
systems.

Some of the results of the MPC algorithm design and
implementation with application VirtModelsKKUI will be use
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in the subject Control & Artificial Intelligence (web page:
http://matlab.fei.tuke.sk/raui).
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