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FOR SIMULATION OF MODELS OF DYNAMIC SYSTEMS
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Abstract: The purpose of this paper is to giveiafbilustration of possibilities of pro-
graming language C# in field of modeling and cleesscontrol theory. We describe im-
plementation of algorithms that perform transfoioratof continuous linear dynamic
systems into their discrete equvivalents, contisuBID control into its discrete form
and employ these algorithms in discrete closed lomyrol. We also show how imple-
mented numerical methods can be used to solvensysiédifferential equations which
are used in modeling of nonlinear dynamic systetistequired related functions are
implemented and integrated into program modulehvare used together in two simi-
lar applications designed to simulate control okér and nonlinear dynamic system
Ball & Plate thus verifying robustness of the Pi@nhtrollers.

Keywords: Velocity algorithm, digital controller,dl & Plate, C# in modeling

1 INTRODUCTION 2 MODELING OF DYNAMICAL SYSTEMS
WITH PROGRAM MODULES CREATED IN
Fields of modeling and control enjoy substantial at C#

tention. It's required however to know and master

right algorithms, programming techniques, math- Before we can start with control we need to define
ematic methods and control procedures to employthe dynamic system in control structure. There are
correctly in developed applications. This paper is numerous methods for but basically we use systems
dedicated to modeling and control of dynamic sys- of differential equations in some form. For thig-pa
tems with employment of computers. Higher pro- ticular task it is wise to use a system of difféian
gramming languages provide an excellent solution fo equations in state space as it's easy to usermtiite
solving problems that include simulation of control algorithms. In general we can describe SISO linear
identification and likewise. Some cases though re- dynamic system with following equations:

quire different approach. When main aim is speed or .

stability of application it's best to use languagssC X(t) = Ax(t) + Bu(?) @)
or C++._There were a lot of new programming lan- y(t) = Cx(t) + Du(t) )
guages in last past years. Quite a lot of atterttias

been acquired by a one called C#. There are numerwhere:

ous publications encompassing algorithms written in
C# for computer science and artificial intelligence
Yet publications that are trying to use this largia  u(t) - system input,
for classic theory of control are very rare. Theref

we decided to contribute into this field with camte y(®)
of this paper and also demonstrate possibilitiehisf A B are constant matrixes describing internal
language. dynamics of system,

X(t) - vector of internal states,

- system output,
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CD
outputs bound with internal states of system
and initial conditions.

As it is impossible for a computer to process data

every instant we need to simplify our model and

transform it into a discrete equivalent.
X(((+DA) =Fx(A)+Gu ()

y(iAt) = Hx(iAt) + Ju(iAt) ®

F, G, H, J - matrixes describing the system in dis- ~

crete state space.

MatrixesF, G, H, andJ are acquired by transforma-
tion of matrixesA, B, C, D, which characterize dy-
namic system in continuous state space.

X(iAt) - vector of internal state variables in tiing

x((i + 1)AY) - vector of internal state variables
in time { + 1)At

u(iAt) - input in timeiAt

y(iAt) - output in timeAt

Such transformation is handled ontinuous to
Discrete system transformation modyfé2D). It's
appropriate to analyze the system response tougrio
inputs before we’'ll apply any control at all. Ifetltase

is SISO (Single Input Single Output) linear dynamic
system we can easily appBystem Analysis module
(SA which comes with intuitive user interface. After
it is provided with matrixe$, G, H, J it will com-

pute and plot system response to choosen input. To

control the system we are using continuous PID-algo
rithm transformed to discrete equivalent a PSD con-
trol. This transformation is managed BYD to PSD
transformation moduléPID2PSD). Closed loop con-
trol of the system can be simulated usi@tpsed
Loop Simulation moduléCLS. It's wise to verify
robustness of the controller. This is possible ¢o a

complish by several ways. One of them is causing a

disturbance in control. If we ponder the fact that
every real dynamic system is nonlinear and thaveif
have a nonlinear model of the system it's better to
verify the robustness of the controller by applyihg
to the original nonlinear model which was simplifie
to linear by linearization. First of all as witmdiar

are constant matrixes that describe how are2.1 Continuous to discreete system transformation-

module C2D
Module inputs:

matrixesA, B, C, D that are describing continu-
ous linear dynamic system

- sampling periodt
Module outputs:

matrixesF, G, H, J that are describing discrete
linear dynamic system

2.1.1 Module analysis

Derivation of discrete state space is followingtds
required for acquiring necessary formulas for trans
formation from discrete to continuous state space.

Let's assume we have a linear dynamic system de-
scribed by (1) and (2):
(1):

Let's modify egation

O
dt

d(e™x()) = e*B ) d

M AX() = 6MB ()

jd(e‘AVx(\o) :j eMB ¥ dh
o to

e x(t)— e x(t) :_t[ eEVB Yy d

fo

A x(t) = e"*‘ox(g)+j eVB (¥ d
I

K = x() + [ B o
fo

wherex(tp) is initial value of state vector. Under the
condition that sampling is ekvidistand with samglin
rate At, for solution in interval O< iAt, (i +1)At >,

(t, =iAt), while input input in this interval meets
the conditonu(v) = u(t) .

dynamic system also nonlinear dynamic system needsanq if we introduce a substitution:

to be defined. Mostly it is described by system of

nonlinear differential equations. These systems are
usually solved by numerical methods. For example by

Runge-Kutta method which is usedNionlinear Dif-
ferential System Solving moduldDSS. In follow-

ing chapters our attention will be focused on dascp
tion of individual program modules than on a demon-
stration of these modules by an application which
combines them together. We'll sum up its resulid an
in the conclusion asset of this paper will be eatdd.
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t-v=r,-dv=dr
V=t - r=t-t,,v=t - =0
and if we're considering only discrete values pfdj
t, =iAt, t=(i +DAt,
wherei ON, = N +{0} .

Then we obtain a discrete state space description:

x((i +1)At) = e x (iAt) +Te” drBu(iat)
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where:
F=e™ 4)
G= Te’” drB (5)
then:
X((i+D)A)=Fx(M)+Gu () (6)
y(iAt) = Hx(iAt) + Ju(idt) . @
Since:

H=CJ=D

It is possible to unroll functiore™ into Taylor’s ar-
ray:

2 3 n
e :Iim(l +éAt+iAt2 +AAt3+...+iA1”j (8)
! 2! 3 n!

n-oo 1 |

where | reprezents unitarily matrix which has the
same dimension as matwx

After integration (5) we obtain according to (Kro-
kavec 2006):

G=[AM4B=AY (e -1)B=AY (F-1)B

—IJB
At

2 n
G:Iim(l—+éAt2+iAt3+..+iAt”jB 9)
n-ol 11 2l 3! n!

G=A'(F-1)B= Allim[l +%At+...+A—'At"
n-o ! n!

2.1.2 Module implementation

We can begin with equations (8) a (9) which are fun
damental formulas for this module. Part of the pro-
gram that handles transformation of the matrixes ca
be described in following steps.

Transformation of matri into matrixF:

1. Initialization of variables\, At, e(0), £ from user
interface (values are up to useir)- 0.

2. F <1

3. Saving e(i—1) (error from previous step).
A A

5. Computation of factorial.

6. F — F +_A—|Ati
I

7. Computation o&(i) for matrixF.

8. Continuing with step 3 arid— i +1, if condition
|e(i) - g(i-1)| < £ is not met. Otherwise end.

Transformation of matri® into matrixG:
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1. Initialization of variablesA, B, At, e(0) & from
user interface (values are up to useéry; O.

2. G<_IE
1

3. Savinge(i-1).
A A?

5. Computation of factorial.
6. G « G+'_“;'Ati
il

7. Computation oé(i) for matrixG.

8. Continuing with step 3 arid-i+1, if condi-
tion|e(i) - (i-1)| < £ is not met. Otherwise end.

Computation o&(i) for matrix F:

7.1. Initialization of variables=, Y, r < 0,i < O.

Y « FT

Y « YF.

r—r+YJii]

7.2,
7.3.
7.4.
75 i ~i+1

7.6. Continuing with step 4 until count of rows in

matrixY isn't reached.

rer

- error in step,

7.7
&(i)

r - result, Y

& - accuracy

- instrumental variable

Computation of (i) for matrix G can be done by

analogy.In following we’ll be using shortened nota-
tion

int =k,
(+1At =k +1,

etc. to simplify notation of eqgations. Afigfor sam-
pling period.

2.2 System Analysis module SA
Module inputs:

- matrixesF, G, H, J describing discrete linear
dynamic system

- sampling periodT
- simulation time spaléto,tf >
- vector of intput values

Module outputs:

- vector of output valueg
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2.2.1 Module analysis

where integration was substitued by trapezoid ap-

As we know from discrete systems theory values of Proximation and derivation by first difference.we

state and output variables can be computed for nextvant (11) to copy (10) with satisfying preci-

step in an iterative computation using egations SIon we have to choose appropriate sampling period.
(3). We can analyze the system from graphi- Equation (11) represents so called positional algo-

cal reprezentation of system response.

2.2.2 Module implementation

Part of the module that is dedicated to compuikd
in an iterative computation can be described in fol
lowing three steps.

1.
2.

Generation of input signal.

X(k +1) and outpuy(K) in cycle for each value of
dicrete input signal.

. Display of the result.

2.3 PID to PSD transformation module PID2PSD
Module inputs:

- parameters of PID controllég, T, Tg, u

- sampling periodT,

- control inputu(k-1)

- control constrainu,,, (U, )

- control errore(k) and e(k—1)

Module outputs:

- control inputu(k)

2.3.1 Module analysis

We can start with eqation describing ideal PID con-
troler:

.
w0 =K+ [0 e+ T (10)
where:
K - proportional gain,
T, - integral time constant,
Ty - derivational time constant,
e(t) - control error,
u(t) - control input.
Equation (10) can be transformed into dis-
crete equivalent according to (Harsany 1998):
k) = K (A8

11)

k

> e()+ (¢ B- ¢ leD)]
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Computation based on eqation (3) of state vector

rithm for PSD controller. From efficiency point of
view it's better to use velocity algorithm where in
crease of control intervention meets condition:

Au(k) = U - U k-1)=

e+ e+ gek) D
where
G = K(1+%SI+T?:) (13)
g =-K@+ 211:—2—21-—15_') (14)
g, = K-l_l__—D. (15)

S

Hence control intervention can be computed using
iterative formula:

u(k) = u k-D)+Au K (16)
so the velocity algorithm for PSD controller is:
u(k)=u(k-)+ q &R+
qe(k-1)+ g € k- 2)

character of PID controler remains preserved if fol
lowing conditions will be met:

QO>0! 0, <-0G, _(qo+0a)<oe<00'

While we are stating only equations for PSD control
We can rewrite (16) into following form

u(k) = u,(R+y(R+ y(h, 17
where
u, (k) =(p-q) &R,
u(k)=y(k-D+(q+ g+ q) € k1),
Uy (k) = (g K- € k-1)).

To prevent “wind-up effect”, which occurs in coritro
when control inputs are bounded to interval
<u_,u >, we will modify velocity algorithm in

foII(rJn\I;v;nSa\XNay.
If u(k) >= Uy (0ru(k) >= u,,),
then
u(K) = y(k-1)
and  U(K) = Uy, (OrU(K) = Yy, ).

To prevent oscilation and sudden changes in control
signal u(k)we can use “derivative filter” which is
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used in (Melichar 2008) and it is demonstrated on 1. Acquisition of PID controler parametefs T, Tp,

Fig. 1.

Vi) e(k) Y(k)

Fig. 1. Schema of derivative filter.
Where

H OT, /(3+ 20),

K, - integral gain,

Ko - derivational gain,

F,(s) - transfer function of controlled system.

Control rule for PID controller with derivative tir :

K,s
us+1

K
U(S)=[K+?'jE(S)- Y3
2(z-1)
T, (z+1)
for PSD algorithm:
[doe+ceZ'+ 0 ] B p+[ g+ 02+ 472] 1)

G+GZ + 67

After substitutions= we obtain control rule

U(2) =

in Z — transformation. This after backward transfor
mation gives following recursive control rule:

”(")zc_lo(“i“ k-D- U k-2)+ ¢ €k

rd e(k-1)+ d & k-2)+ ¢, Yk (18)
+dy (k1) + dy y(k-2))

where

Co =4u+21,,¢ =-8u,C, =4u-21,

Ay, = 4K+ 2KT, + 2K, T+ K, T2,

d, =-8Ku+2K T?, (19)

d,, = 4K - 2KT, - 2K, Tu+ K, T2,

dy, = 4K, , d,, =8K,, d,, = -4K,

are parameters of (18).

2.3.2 Module implementation

We can implement an algorithm which can be em-
ployed in discretization of PID controller to PSD
form. Part of the module that handles this specific
task can be summarized into next steps:
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sampling period, (and filter parameter ).

2. Parameters),, q;, g computation based on (13),
(14), (15) or computation of parameters for PSD
with derivative filter based on (19) .

And using (17) we can compute control inp(k) .

This part of module can be described in following
steps:

1. Acquisition of control inputilk—1) and control

constraintu, ., (u...) and control errore(k) and
e(k—1) from another module.

Computation of control inpui(k) based on (17).

If u(k) >=uy,,, (oru(k) >=u,,).
then
u (k) = y (k=D and u(k) = y,, (oru(k) = y,)-

Or if we are using PSD with derivative filter wenca
compute u(k) using (18) with following implementa-

tion:

1. Acquisition of control inputa(k-1),u(k-2),
control errorse(k) ,e(k-1),e(k—2)and outputs
y(K), y(k-1), y(k—2) from another module.

2. Computation of control inpui(k) based on (18).

If we want to implement discretization of P, PIl, PD
controllers we can do it by analogy deriving from
implementation of discretization of PID controler.

2.4 Closed Loop Simulation module CLS
Module inputs:

- matrixesA, B, C, D that describes continuos lin-
ear dynamic systernd sampling periot,

- controller parametets, T, Ty, #

- vector of reference valugs
- simulation time sparﬁto,tf >
- control inputu(k)

Module outputs:

- vector of control inputs

- vector of control errore

- vector of output valueg

2.4.1 Module analysis

As we know from automatic control theory, some

dynamic systems can be controlled by PID control
algorithms. For successful PID control we need to
obtain a set of parameters for these algorithms by
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using convenient method of synthesis. The main ele-

ments of the control algorithm are represented by
(6) and (7). Using these formulas we can

compute values of state and output variables foh ea

step in an iterative computation. Similarly usiig’)

or (18) we can obtain control intervention of thmn¢

troller for each step.

Schema of closed loop control structure is demon-
strated on Fig. 2.

7. Noise signal generation (if was defined).

8. Recurent computation of response of controlled
system to reference signal.

Implementation of recurent computation of response
of controlled system to reference signal (step rermb
8) is described in following steps.

81 k<0

-, 82. e — y(R- y(B
W et - o Yo 8.3. Control intervention computation according to
congoer — (17) (or (18) if we are using derivative filter)
usingPID2PSDmodule.
8.4. Suming pertubation and control intervention (if
perturbation was defined).
Yo(k)
8.5. Computation of response of controlled system
o to control intervention with pertubation accord-
ing to (3).
Fig. 2: Schema of closed loop control 8.6. Observed controlled system output computation
vi(K) - desired value (value of controlled system output summed with
noise).
e(k) - control error )
u(k) - control input aquired using (17) or (18) 8.7. S_avmg e{k—l) (and if we are using derivative
filter savingu(k-1) andy(k-1)).
z(K) - perturbation caused by outside world
y(k) - system output which can’t be measured it's 8.8. Savmge(k) andu(k) (and if we are using deriva-
. : tive filter y(k) ).
aquired using )
vo(k) - observed system output 8.9. If number of samples of reference signal is not
_ ) ) exceeded continue with step 2 &nd k+1.
2(K) - noise that is affecting the sensor Otherwise end.

In this module we will employC2D and PID2PSD

which we described earlier. We can for example use, 5 Nonlinear Differential System Solving module

Naslin or Graham-Lanthrop method for controler
synthesis stated in (Madarasz 2007), (Mikle$ 1986).

2.4.2 Module implementation
Implementation of velocity algorithm, which is ugin

NDSS
Module inputs:

starting conditiond (t,, X,) ,

vector of nonlinear functionk(t, x) ,

selected methods of synthesis (Naslin and Graham-

Lanthrop) and was verifyied on models of dynamic _

systems (simple mechanic oscillator and vagonrset i
(Dolinsky 2008) in closed loop control using lan-
guage C#, can be described in following steps.

1. Acquisition of system model parameters (ma-

trixesA, B, C, D and sampling periofl ).

2. Transformation of matrixe#, B, C, D to their
discrete equivalents, G, H, J.

3. Acquisition of controller parameters (controller
type and subsistent parameters).

4. Acquisition of reference, perturbation and noise
signal parameters (description in user manual
(Dolinsky 2008).

5. Reference signal generation.

6. Perturbation signal generation (if was defined).
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sime spar(to,tf >

initial stephy,i,and minimal stejh.
Module outputs:

vector of final valuesf (t, )

2.5.1 Module analysis

This module enables us to simulate nonlinear model
of dynamic system described by systems of nonlinear
differential equations.
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d
d—);l: £t X000, )
d
d_)iz: fo(t X, X,)
d
% tet)

Module implements numerical method Runge— Kutta
of 4™ order. According to (Busa et al. 2006) this

method is based on approximation expressed in fol-

lowing form.
Ky =%, +rt R el (20)
where:
f.(t)  -i-th nonlinear functioni(=1,2,...n)
f,(t,) - initial value ofi-th function
f,(t;) -final value ofi-th function
X | - value ofi-th state variable in stgp
X+ - Vvalue ofi-th state variable in step+1.

Valuesk, are:

k=hf(t.x,)
k, =h f(t +h/2,x, +K/2) (1)
k,=hf(t +h/2,x, +k/2)

k,=hf(t +hx, +k)

To check if the step is small enough we can use fol
lowing.

[k, —ks)/(k = ko) |

If value (22) is approximately equal to 0.05 wel wi
preserve last used step. If (22) is consideratdatgr
than 0.05 we will reduce stép

(22)

2.5.2 Module implementation

1. Initialization of variables (initial time, final e,
step, minimal step, initial contditons, collection
of diferential equations).

2. If step doesn’'t meet the precision conditions and
is greater than minimal step than we’ll reduce
step by half.

3. Computation of parameteksaccording to (21).

4. |If step doesn’t meet the precision conditions and

is greater than minimal step than we’'ll continue
with step 2 otherwise we’ll continue with step 5.

540

5. Actual time is increased by sthp
6. Computation of values ; ,,according to (20).
7. If actual time is lesser than final time we'll con-

tinue with step 2 otherwise end.

3 APPLICATION OF DESIGNED PROGRAM
MODULES TO PHYSICAL SYSTEM
BALL & PLATE

3.1 Application analysis

While implementing our application we have to re-
spect that the real model is nonlinear and thattd’
our benefit to simulate both linear and nonlinear
model behaviour. Therefore it's required to create
two applications that will integrate and control-im
plemented program modules as different modules will
be used for simulation and control in each case.

3.2 Analysis of dynamic system Ball & Plate

This model is represented by a ball rolling on atepl
This plate is controlled by a couple of step mators
Position of the ball is scaned by a camera. Images
analysed by a computer which will determine the bal
location and consecutively will determine and send
out appropriate voltage to step motors. These reotor
will lean the plate to desired angle and forcetib

to move in appropriate direction so the desiredltes
would be achieved.

Schema from (Humusof€CE151 Ball and Plate Ap-
paratus — Educational Manudl996 - 2004) is shown
on Fig. 3, block schema is on Fig. 4.

MATLAB

environment

Yx

e

1=
=

05
E,

MATLAB|
er\vmnmen’ ]
u —]

&

Fig. 3: Schema of Ball & Plate and apparatus
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Servo
system

Fig. 4. Block schema of Ball & Plate
Variables description:

yu(1), ¥(t) - ball location on plate determined from

acquired image [m, m]

Uy(t), u(t) - voltages controlling individual steping
motors [V, V]
a(t), b(t) - angles representing inclination of plate
[rad, rad]
X(1), v(t) - ball real position [m, m]

Iy - ball radius [m]

1) - vector of ball angular velocity [rad/s]

a, p - angles of plate inclination [rad]

ly - ball inertia [kg.rfi

I - plate inertia [kg.1)

m - ball mass [kg]
- gravitional acceleration s

Fo - force influencing the plate in the direction
of axisx [N]

Fs -force influencing the plate in the direction
of axisy [N]

Ball motion is described by (23) and (24) which de-
scribe dependence of ball acceleration from angte a
angular velocity of the plate inclination. Eqations

As there is no feedback between ball position and (25) and (26) are describing how the plate inciavat

plate inclination it's possible to divide the modiato

two separate parts servomechanism and ball freel

rolling on the plate. Matematical model without-ser
vomechanism was derived in (Humus@&151 Ball
and Plate Apparatus — Educational Manued96 -
2004) from basic Euler - Lagrange equation.

doarT_oT, ov_
dtaq oq aq
where
(of - thei-th generalized coordinate
g - the first derivation of theth generalized
coordinate by time
T - kinetic energy of the system
\% - potential energy of the system
Q - thei-th generalized force

Detailed derivation is in (Humusof€E151 Ball and
Plate Apparatus — Educational Manub996 - 2004).

Finally we get a system of four differential eqoas
of the second grade.

X: (m+%)'x— niaB yr&® ¥+ mgina =0 (23)
y: (m-2)3- g Y+ meng=0 (24

(I, +1, +MC)d+ (B xy+ Bxyr B Xy 20 %)

(25)
+mgxcosa = F, dcosr
(1, +1, +M0E) B+ M@ xy+ @ Xy & 3523 %) 26)
+mgxcosB = F; dcog?
where
XY - ball coordinates on the plate [m]

541

dynamics is influenced by the external driving #orc

yand the position and speed of the ball. Accordng t

the B&P manual it's possible to simplify the dynam-
ics of B&P. Using the assumptions from manual we’'ll
finally obtain following model.

d—zx—§gsina~ K,a
a2 7 b
d_2y:§gsinﬂ~ K ﬁ
a2 7 >

3.2.1 Servo system

Block schema of the servo system from (Humusoft:
CE151 Ball and Plate Apparatus — Educational

Manual1996 - 2004) is on Fig. 5. Due to limitations

of the system this part contains several nonlinear
components.

Rats Limiter

: Ka |5 S e a
i B2 = G| -y K [rad]
| Ampltude Limiter

amlx

MATLAB A
Environment ‘

Fig. 5: Block schema of servo system

The first nonlinear component is a filter calledera
limiter which is restricting the scope of speed of
change (derivation) of input voltage. This filteles

the problem of software driver. The problem dwells
in following. Stack in which we store wanted value
can be actualized only after reaching the desiosi p
tion. In other words we cannot exceed nominal speed
of stepping motors which is determined by frequency
of impulses which are supplyied by driving card of
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stepping motors. We can expess it matematically in State equations

following statements. X=A X+B U

K)-u (k-1
rate = e (K Tu,( )
s 01 O 0
Uy (K)=+T.R+ y,( k-1) rate < R x=|{0 0 K X+ | 0] u, 27)
Uy (K) =-T, R+ ¢ ( k-1) rate <R 00 -+ Ti
u,, (k) = otherwise.
f b y,=C x=[1 0 ( x (28)
where
o Linear model transfer function:
U, - filter input
Y K, KK K
i F S) = X = a’ *B x = . 29
Uyt filter output (s) U (s (T sD (29)
k - step
] ) System characteristics
At - sampling period

The B&P model is a 3rd order system with the 2nd
R - rate treshold order of astatism

Additional nonlinear dynamics are caused by a satu-cnaracteristic nonlinearities:
ration filter called amplitude limiter which ensere o
that maximum slope of the plate cannot be exceeded: rate limiter

Input signal is limited into interval <-1,1> so @ft  _ gaiyration
multiplying it by static gain it fits into plate @gfina- ) _
tion limits. Finally we have to respect the facttthe - time constant dependent on the magnitude and fre-

stepping motors have constant speed of steppingduency of an input signal

Hence we n(_aed to add an element that will be_irh;ens unmodelled properties :

tive to certain range of values and beyond thierint o

val output will be a positive or negative constant - friction

value thus modeling the motion of the motors up- _ jefects in the ball and/or plate surface
wards or downwards.

System parameters 3.3 Linear Ball & Plate Control Simulation module

Parameters of dynamic system can be measured di- LBPC
rectly or are known from (HumusofZE151 Ball and Module inputs:
Plate Apparatus — Educational Manub996 - 2004).

. . - PID parameterK, Tgy, Ti,
Normalized parameters are following.

- sampling periodTl,

K overall system gain 1§
w nominal speed of servo system s - simulation time Spa'éto,tf > ,
Tm  time constant of servosystem [S] - noise and perturbation parameters.
K, static gain [rad/MU] Module outputs:
Kp B&P system gain [&rad] - vector of control input fok andy axisuy, Uy,
Ky ball position sensor constant [MU/'m]  _  yector of position fox andy axisys, Yy,
Linear model - vector of observed position forandy axis Yo
State vector: Yoy,
X, v ball's position [-] - vector of control error fox andy axise,, .

ball' s velocity [s™]
plate' s inclination [-] 3.3.1 Module analysis

When we are assuming linear model of Ball & Plate
we can compute system states and outputs using (27)
and (28). Although Ball & Plate is a MIMO (Multi
Output y, ... ball position read to Matlab Input Multi Output) dynamic system it's possible to

y O<-1,+1> divide it into two SISO dynamic systems (ball matio
* on the plate in direction of axisand motion in direc-

X=%|=
X3

Q<

Input u, ... desired plate angle sent out from Mat-
lab u, O<-1,+1>
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tion of axisy). Therefore we’ll conduct analysis only
for one coordinate (rules for the second cooridate
the same).

z1(K)

vk e S v

controller

use

Sensor

Yo(k)

3.4

Qo = 233,% = '44.76,q2 =21.52.

Control rule for PSD controller is following:
u(k) =u k-1)+23.35(K) -44.76e(k B 2152 .

Module implementation

To simulate closed loop circuit for both axes wa ca

moduleCLSwhich was described earlier. But we

have to modify the implementation of recursive com-

putation of response of controlled system to follow

o ing form.
. . 71. k<0
Fig. 6: Cloosed loop control of linear Ball & Rdat
model 7.2. K~ y(R- y(h

Yi(k) - control input(reference trajectory for one 7.3. Control intervention computation according to
axis) (17) (or (18) if we are using derivative filter)

e(K) - control error usingPID2PSDmodule.

u(k) _ control input which is computed from (17) 7.4. C_:omputatl_on of state vector according to the
or (18)(voltage supplied to stepping motor first equation of  (3),
which controls inclination of plate in direc- 7.5, Summing perturbation and ball position (if per-
tion of one axis) turbation was defined).

z(k) - perturbation that affects ball position 7.6. Limitation of the ball position.

y(k - output (ball position) which is computed 7.7. Computation of response of the system accord-
from  (3) ing to second equation in 3).

Yo(K) - observed output (ball position influenced 7.8. Computation of observed output (value of out-
by noise) put summed with noise),

z(k) - noise affecting the sensor 7.9. Savinge(k-1) (and if we are using derivative

It might appear that perturbation and noise are the
same and can be considered as one signal butishere
difference in character of those signals. Charaater
perturbation signal is deterministic while charadg
noise is pseudorandom although its amplitude is lim
ited. We can use perturbation to simulate jumping
and sliding of the ball on the plate as those pheno
ena are present in real model. Noise can be used to
simulate behaviour of camera and imperfections of
image recognition algorithm. Synthesis of contmol i
based on transfer function (29).

3.5

filter savingu(k-1) andy(k-1)).

7.10. Savinge(k) andu(k) (and if we are using de-

rivative filter y, (k) ).

7.11. If number of samples of reference signal is not

exceeded continue with step 2 d&nd k+1.
Otherwise end.

Nonlinear B&P Control Simulation Module
NBPCSM

PID controller designed by Naslin method has fol- Module inputs:

lowing parameter& = 0.125,T;=4, T, = 8.

Corresponding parameters of PSD controller when
sampling period igs= 0.1 are:

0o =5.1257 0, = -10.124g, =5.

Control rule for PSD controller is following:
u(k) = U k-1)+5.125%(K)-10.12e k BH Bk .

PID controller designed by Graham-Lanthrop method -
has following parameten§ = 1.743,Ty = 0.494,T, =
1.098.

Corresponding parameters of PSD controller when"
sampling period i§s = 0.04 are:

543

PID parameterK, Ty, T, 1,
Sampling periodT,

Simulation time sparéto,tf > ,

noise and perturbation parameters

Module outputs:

vector of control input fok andy axisuy, Uy,
vector of position fox andy axisysy, Yy,

vector of observed position forandy axis Yoy,
yOyl
vector of control error fox andy axise,, g,.
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3.5.1 Module analysis
When we are assuming nonlinear model of Ball &

Plate we have to compute system states and outputs

using (23) a (24) which are describing behaviour of
the nonlinear dynamic system.

As not the forces, andF; but directly the angles

andp are system inputs. This is due to the fact that g

the frequency of a stepper is below the accelaratio
limit. No steps can be lost and the magnitude atilo
moment cannot affect the motor position. This as-
sumption results in omitting the equations (25) and
(26) as stated in (Humusof€E151 Ball and Plate
Apparatus — Educational ManudlB96 - 2004). But

of course we still have to respect limits of dynami
system.

l Zox(k)
Yox(k) Sensor
for x axis
location
K le(k)
Uy (K
Yo Digital controller ()
e (k) for axis x | Yy(K)
—
—
Kk K
Yry( ) ey(k) Digital controller Yy( )
for axisy
uy(k)
Z1y(K)
Sensor
for y axis
yoy(k) location

I Z2(K)

Fig. 7: Cloosed loop control of nonliear Ball &4
Vix(K) - control input (reference trajectory for axis
X)

e(k) - control error for axix

u(k) - action input which is computed from (17)
or (18) (voltage supplied to stepping motor
which controls inclination of plate in direc-
tion of x axis)

z(K) - perturbation that affects ball position

yi(K) - output for axisx (x coordinate of ball posi-
tion) which is computed from 3)

Vox(K) - observed output for axis(x coordinate of
ball position influenced by noise)

2«(K) - noise affecting the sensor in coordinate

Description fory axis variables can be done by anal-
ogy. To control nonlinear dynamic system Ball &

Acquisition of reference, perturbation and noise
signal parameters and sample time.

Reference signal generation.
Perturbation signal generation (if was defined).
5. Noise signal generation (if was defined).

Recurent computation of response of controlled
system to reference signal.

Implementation of recurent computation of response
of controlled system to reference input (step numbe
6) is described in following steps.

6.1. k-0
6.2 g (K — ¥ (K- y.(h
(K < (R (B

6.3. Computation and rate and amplitude limitation
of voltages for each motor.

6.4. Computation of plate inclination angles, their
limitation, computation of difference between
present and last value and its filtration (based
on sensitivity).

6.5. Numerical integration of angles.

6.6. Computation of ball position and derivation of
ball position.

6.7. Summing perturbation and ball position (if per-
turbation was defined).

6.8. Computation of ball position affected with
noise and limitation of ball location.

6.9. Savinge (k-1),e (k-1),e (K ,e (K ,u.(Kk),

u,(K) (if we are using derivative filter saving

alsoyox(k) 1 yoy(k) 1 yox(k_l)l yoy(k_l) ’
u,(k=-1),u,(k-1)) and plate inclination

(a(k),B(K)) .

6.10. If number of samples of reference input is not
exceeded continue with step 2 &nd k+1.
Otherwise end.

3.6 Application results

For simulation of control of the dynamic systemIBal

& Plate we used following signals. As a controlled
input we used position of the ball and as a control
input we used ball desired positon or desired ¢raje

tory. Results depend on employed controller, ddsire
trajectory, time span provided to cover the trajegt

Plate we used controllers designed using transfersampling period, perturbations and noise. As a per-

function of linear model of Ball & Plate.

3.5.2 Module implementation

1. Acquisition of controller parameters (controller
type and subsistent parameters).
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turbation signal we use a signal that affects padii-

ton. Thus we can approximate real conditions where
ball in certain moments looses contact with thaepla
or is sliding. Noise in this system is considerade
image processing by camera determining the location
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of the ball is affected by light conditions and Ibal
color.

In general results of control of linear model asg-b

ter. Following pictures illustrate results of limesnd
nonlinear model. Simulation time was 60 seconds for

sqare and circle trajectory, 120 seconds for stdr a
helix and 30 seconds for position. For controliof |

ear model we used controller designed by Graham-

Lanthrop methodK = 1.743,T4 = 0.494,T; = 1.098)

. L T .
with derivative filter (« :1—“0), as we acquired better

results. For control of nonlinear model we used-con

Y axis

Ball Trajectory
02 7
01 \¢
0.0
204 ——J
02 ]
02 -01 00 01 02
X axis
—— Modelfrajectory  —— Reference frajectory —=— Plate Margins
—e—_Ball final position

Fig. 11: Tracking of sgare trajectory (nonlinear

. ) model)
troller designed by Naslin methol € 0.125,T4 =4,
T, = 8) without derivative filter. Ball and Plate
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3 T
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Fig. 10: Tracking of sgare trajectory (linear mpde
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Fig. 14: Tracking of star trajectory (linear model
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Ball Trajectory

02
01
2 = =
% 00
> / .
01 /,
02
-02 -01 00 01 02
X axis

—— Model frajectary
—e— Ball final position

—— Reference rajectory —5— Plate Margins ‘

Fig. 15: Tracking of star trajectory (nonlinearahad)

Ball and Plate
02 :
01
. W’_—\\
% 00 { s \
: ) )
-01
02
-0.2 -0.1 0.0 0.1 0.2
Xaxis
—— Computed frajeciory —— ReTerence traeciory —5— Plate Margins
—o— Ball final position

Fig. 16: Tracking of helix trajectory (linear mdge
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Fig. 17: Tracking of helix trajectory (nonlinear

Ball and Plate
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Fig. 20: Tracking of sgare trajectory (axis y)haitit

filter.
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Fig. 21: Tracking of sgare trajectory (axis y)twit
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Fig. 22: Tracking with sgare trajectory withoutef.

Fig. 10 can be compared with Fig. 22 to demon-

strate effect of derivative filter whe
tory is changing very steeply.

n referencajec-
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4 CONCLUSION D. Krokavec, A. Filasova. (2006piskrétne systémy
KoSice: Elfa. 302 s. ISBN 80-8086-028-9
e e el oA L. Mz, . Sk, L Foro. (2007 24kiacy
N . ! automatického riadenia 1. Elfa. KoSice. ISBN
their discrete equivalent and analyze behaviour of 978-80-8086-042-4
these dynamic systems. Then we continued with
transformation of PID algorithm to its discreterfor ~ J. MikleS, V. Hutla. (1986)Tedria automatického
We used PSD algorithm with anti-windup and deriva- riadenia Alfa. Bratislava. ISBN 63-576-86
tlvg filter in simulation of control in closed loagir- J.Melichar. (2008)inearni Systémy 2 dbni text)
cuit. As we wanted to evaluate robustness of contro - g : X
ZCU Plzei (available on inernet).
we created a program module that enables us te solv
nonlinear systems of differential equations. Akkgh
modules were used in an application that simulates
behaviour of real physical model Ball and Plate. We
created two applications one for simulation of coint
of linear model and second for nonlinear model of
dynamic system Ball and Plate. Thus we verified the
robustness of designed control. Also we showed that
while C# doesn't directly provide functions or pesc
dures for modeling or control of dynamic system, we
can create them by ourselves. Considering the fact
that syntax of C# is very easy and thorough we can
quickly implement required functions into program
modules which can be used in an application in de-
sired way. Also we are not bound to higher program-
ming languages as Matlab. Moreover it's possible to
use rich possibilities that platform .NET provides.
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