
Slovak University of Technology in Bratislava
Institute of Information Engineering, Automation, and Mathematics

PROCEEDINGS
17th International Conference on Process Control 2009

Hotel Baník, Štrbské Pleso, Slovakia, June 9 – 12, 2009

ISBN 978-80-227-3081-5

http://www.kirp.chtf.stuba.sk/pc09

Editors: M. Fikar and M. Kvasnica

Jadlovská, A., Dolinský, K., Lonščák, R.: Application of Designed Program Modules in C# Language for
Simulation of Models of Dynamic Systems, Editors: Fikar, M., Kvasnica, M., In Proceedings of the 17th
International Conference on Process Control ’09, Štrbské Pleso, Slovakia, 534–547, 2009.

Full paper online: http://www.kirp.chtf.stuba.sk/pc09/data/abstracts/037.html

APPLICATION OF DESIGNED PROGRAM MODULES IN C# LANGU AGE
FOR SIMULATION OF MODELS OF DYNAMIC SYSTEMS

A. Jadlovská, K. Dolinský, R. Lonščák

 Department of Cybernetics and Artificial Inteligence, Faculty of Electrical Engineer-
ing, Technical University of Košice, Letná 9/A, 040 01 Košice

 e-mail: Anna.Jadlovská@tuke.sk, kamil@plazma.sk, Richard.Lonscak@tuke.sk

Abstract: The purpose of this paper is to give a brief illustration of possibilities of pro-
graming language C# in field of modeling and classical control theory. We describe im-
plementation of algorithms that perform transformation of continuous linear dynamic
systems into their discrete equvivalents, continuous PID control into its discrete form
and employ these algorithms in discrete closed loop control. We also show how imple-
mented numerical methods can be used to solve systems of differential equations which
are used in modeling of nonlinear dynamic systems. All required related functions are
implemented and integrated into program modules which are used together in two simi-
lar applications designed to simulate control of linear and nonlinear dynamic system
Ball & Plate thus verifying robustness of the PID controllers.

Keywords: Velocity algorithm, digital controller, Ball & Plate, C# in modeling

1 INTRODUCTION

Fields of modeling and control enjoy substantial at-
tention. It’s required however to know and master
right algorithms, programming techniques, math-
ematic methods and control procedures to employ
correctly in developed applications. This paper is
dedicated to modeling and control of dynamic sys-
tems with employment of computers. Higher pro-
gramming languages provide an excellent solution for
solving problems that include simulation of control,
identification and likewise. Some cases though re-
quire different approach. When main aim is speed or
stability of application it’s best to use languages as C
or C++. There were a lot of new programming lan-
guages in last past years. Quite a lot of attention has
been acquired by a one called C#. There are numer-
ous publications encompassing algorithms written in
C# for computer science and artificial intelligence.
Yet publications that are trying to use this language
for classic theory of control are very rare. Therefore
we decided to contribute into this field with content
of this paper and also demonstrate possibilities of this
language.

2 MODELING OF DYNAMICAL SYSTEMS
WITH PROGRAM MODULES CREATED IN

C#

Before we can start with control we need to define
the dynamic system in control structure. There are
numerous methods for but basically we use systems
of differential equations in some form. For this par-
ticular task it is wise to use a system of differential
equations in state space as it’s easy to use in iterative
algorithms. In general we can describe SISO linear
dynamic system with following equations:

 () () ()t t u t= +ɺx Ax B (1)

 () () ()y t t u t= +Cx D (2)

where:

x(t) - vector of internal states,

u(t) - system input,

y(t) - system output,

A, B are constant matrixes describing internal
dynamics of system,

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-8, 037.pdf

534

C, D are constant matrixes that describe how are
outputs bound with internal states of system
and initial conditions.

As it is impossible for a computer to process data in
every instant we need to simplify our model and
transform it into a discrete equivalent.

((1)) () ()

() () ()

i t i t u i t

y i t i t u i t

+ ∆ = ∆ + ∆
∆ = ∆ + ∆

x Fx G

Hx J
 (3)

F, G, H, J - matrixes describing the system in dis-
crete state space.

Matrixes F, G, H, and J are acquired by transforma-
tion of matrixes A, B, C, D, which characterize dy-
namic system in continuous state space.

x(i�t) - vector of internal state variables in time i�t

x((i + 1)�t) - vector of internal state variables
in time (i + 1)�t

u(i�t) - input in time i�t

y(i�t) - output in time i�t

Such transformation is handled by Continuous to
Discrete system transformation module (C2D). It’s
appropriate to analyze the system response to various
inputs before we’ll apply any control at all. If the case
is SISO (Single Input Single Output) linear dynamic
system we can easily apply System Analysis module
(SA) which comes with intuitive user interface. After
it is provided with matrixes F, G, H, J it will com-
pute and plot system response to choosen input. To
control the system we are using continuous PID algo-
rithm transformed to discrete equivalent a PSD con-
trol. This transformation is managed by PID to PSD
transformation module (PID2PSD). Closed loop con-
trol of the system can be simulated using Closed
Loop Simulation module (CLS). It’s wise to verify
robustness of the controller. This is possible to ac-
complish by several ways. One of them is causing a
disturbance in control. If we ponder the fact that
every real dynamic system is nonlinear and than if we
have a nonlinear model of the system it’s better to
verify the robustness of the controller by applying it
to the original nonlinear model which was simplified
to linear by linearization. First of all as with linear
dynamic system also nonlinear dynamic system needs
to be defined. Mostly it is described by system of
nonlinear differential equations. These systems are
usually solved by numerical methods. For example by
Runge-Kutta method which is used in Nonlinear Dif-
ferential System Solving module (NDSS). In follow-
ing chapters our attention will be focused on descpri-
tion of individual program modules than on a demon-
stration of these modules by an application which
combines them together. We’ll sum up its results and
in the conclusion asset of this paper will be evaluated.

2.1 Continuous to discreete system transformation-
module C2D

Module inputs:

- matrixes A, B, C, D that are describing continu-
ous linear dynamic system

- sampling period �t

Module outputs:

- matrixes F, G, H, J that are describing discrete
linear dynamic system

2.1.1 Module analysis

Derivation of discrete state space is following as it is
required for acquiring necessary formulas for trans-
formation from discrete to continuous state space.

Let’s assume we have a linear dynamic system de-
scribed by (1) and (2):

Let’s modify eqation (1):

()
() ()t t td t

e e t e u t
dt

− − −− =A A Ax
Ax B

(()) ()t td e t e u t dt− −=A Ax B

0 0

(()) ()
t t

v v

t t

d e v e u v dv− −=∫ ∫
A Ax B

0

0

0() () ()
t

tt v

t

e t e t e u v dv−− −− = ∫
AA Ax x B

0

0

0() () ()
t

tt v

t

e t e t e u v dv−− −= + ∫
AA Ax x B

0

0

() ()
0() () ()

t
t t t v

t

t e t e u v dv− −= + ∫
A Ax x B ,

where x(t0) is initial value of state vector. Under the
condition that sampling is ekvidistand with sampling
rate �t, for solution in interval , (1)v i t i t∈< ∆ + ∆ > ,

0()t i t= ∆ , while input input in this interval meets

the conditon 0() ()u v u t= .

And if we introduce a substitution:

t v τ− = , dv dτ− =

0 0v t t tτ= → = − , 0v t τ= → =

and if we’re considering only discrete values of time,

0t i t= ∆ , (1)t i t= + ∆ ,

where 0 {0}i N N∈ = + .

Then we obtain a discrete state space description:

0

((1)) () ()
t

ti t e i t e d u i tτ τ
∆

∆+ ∆ = ∆ + ∆∫
A Ax x B

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-8, 037.pdf

535

where:

 te ∆= AF (4)

0

t

e dτ τ
∆

= ∫
AG B (5)

then:

 ((1)) () ()i t i t u i t+ ∆ = ∆ + ∆x Fx G (6)

 () () ()y i t i t u i t∆ = ∆ + ∆Hx J . (7)

Since:

H = C, J = D

It is possible to unroll function te ∆A into Taylor’s ar-
ray:

2 3
2 3lim ...

1! 2! 3! !

n
t n

n
e t t t t

n
∆

→∞

= + ∆ + ∆ + ∆ + + ∆

A A A A A
I (8)

where I reprezents unitarily matrix which has the
same dimension as matrix A.

After integration (5) we obtain according to (Kro-
kavec 2006):

1 1 1
0[] () ()t t te e− ∆ − ∆ −= = − = −A AG A B A I B A F I B

1 1() lim ...
1! !

n
n

n
t t

n
− −

→∞

= − = + ∆ + + ∆ −

A A
G A F I B A I I B

2
2 3lim ..

1! 2! 3! !

n
n

n

t
t t t

n→∞

 ∆= + ∆ + ∆ + + ∆

A A A
G I B (9)

2.1.2 Module implementation

We can begin with equations (8) a (9) which are fun-
damental formulas for this module. Part of the pro-
gram that handles transformation of the matrixes can
be described in following steps.

Transformation of matrix A into matrix F:

1. Initialization of variables A, t∆ , e(0), ε from user
interface (values are up to user), 0i ← .

2. ←F I

3. Saving (1)e i − (error from previous step).

4. 2←A A

5. Computation of factorial.

6.
!

i
it

i
← + ∆A

F F

7. Computation of ()e i for matrix F.

8. Continuing with step 3 and 1i i← + , if condition

() (1)e i e i ε− − < is not met. Otherwise end.

Transformation of matrix B into matrix G:

1. Initialization of variables A, B, t∆ , e(0), ε from
user interface (values are up to user), 0i ← .

2.
1!

t∆←G I

3. Saving (1)e i − .

4. 2←A A

5. Computation of factorial.

6.
!

i
it

i
← + ∆A

G G

7. Computation of ()e i for matrix G.

8. Continuing with step 3 and 1i i← + , if condi-

tion () (1)e i e i ε− − < is not met. Otherwise end.

Computation of ()e i for matrix F:

7.1. Initialization of variables F, Y, 0r ← , 0i ← .

7.2. T←Y F

7.3. ←Y YF .

7.4. [,]r r i i← +Y

7.5. 1i i← +

7.6. Continuing with step 4 until count of rows in
matrix Y isn’t reached.

7.7. r r←

()e i - error in step i, ε - accuracy

r - result, Y - instrumental variable

Computation of ()e i for matrix G can be done by

analogy.In following we’ll be using shortened nota-
tion

i t k∆ = ,

 (1) 1i t k+ ∆ = + ,

etc. to simplify notation of eqations. AndsT for sam-

pling period.

2.2 System Analysis module SA

Module inputs:

- matrixes F, G, H, J describing discrete linear
dynamic system

- sampling period sT

- simulation time span 0 , ft t

- vector of intput values u

Module outputs:

- vector of output values y

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-8, 037.pdf

536

2.2.1 Module analysis

As we know from discrete systems theory values of
state and output variables can be computed for next
step in an iterative computation using eqations
 (3). We can analyze the system from graphi-
cal reprezentation of system response.

2.2.2 Module implementation

Part of the module that is dedicated to compute y(k)
in an iterative computation can be described in fol-
lowing three steps.

1. Generation of input signal.

2. Computation based on eqation (3) of state vector
x(k +1) and output y(k) in cycle for each value of
dicrete input signal.

3. Display of the result.

2.3 PID to PSD transformation module PID2PSD

Module inputs:

- parameters of PID controller K, TI, Td, µ

- sampling period sT

- control input (1)u k −

- control constraint maxu (minu)

- control error ()e k and (1)e k−

Module outputs:

- control input ()u k

2.3.1 Module analysis

We can start with eqation describing ideal PID con-
troler:

0

1 ()
() [() ()]

t

d
I

de t
u t K e t e d T

T dt
τ τ= + +∫ (10)

where:

K - proportional gain,

TI - integral time constant,

Td - derivational time constant,

e(t) - control error,

u(t) - control input.

Equation (10) can be transformed into dis-
crete equivalent according to (Harsány 1998):

1

1

(0) ()
() [() (

2

()) (() (1))]

s

I

k
d

i s

T e e k
u k K e k

T

T
e k e k e k

T

−

=

+= + +

+ − −∑
 (11)

where integration was substitued by trapezoid ap-
proximation and derivation by first difference. If we
want (11) to copy (10) with satisfying preci-
sion we have to choose appropriate sampling period.
Equation (11) represents so called positional algo-
rithm for PSD controller. From efficiency point of
view it’s better to use velocity algorithm where in-
crease of control intervention meets condition:

0 1 2

() () (1)

() (1) (2)

u k u k u k

q e k q e k q e k

∆ = − − =
= + − + −

 (12)

where

0 (1)
2

s D

I s

T T
q K

T T
= + + (13)

1 (1 2)
2

SD

S I

TT
q K

T T
= − + − (14)

2
D

s

T
q K

T
= . (15)

Hence control intervention can be computed using
iterative formula:

() (1) ()u k u k u k= − + ∆ (16)

so the velocity algorithm for PSD controller is:

0

1 2

() (1) ()

(1) (2)

u k u k q e k

q e k q e k

= − + +
− + −

character of PID controler remains preserved if fol-
lowing conditions will be met:

0 0q > , 1 0q q< − , 0 1 2 0()q q q q− + < < .

While we are stating only equations for PSD control.
We can rewrite (16) into following form

() () () ()p i du k u k u k u k= + + , (17)

where

 0 2() () ()pu k q q e k= − ,

0 1 2() (1) () (1)i iu k u k q q q e k= − + + + − ,

 2() (() (1))du k q e k e k= − − .

To prevent “wind-up effect”, which occurs in control
when control inputs are bounded to interval

min max,u u< > , we will modify velocity algorithm in

following way.

If max()u k u>= (or min()u k u>=),

then

() (1)i iu k u k= −

and max()u k u= (or min()u k u=).

To prevent oscilation and sudden changes in control
signal ()u k we can use “derivative filter” which is

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-8, 037.pdf

537

used in (Melichar 2008) and it is demonstrated on
Fig. 1.

yr(k) e(k)

 Kd s

F sp()=
u(k) y(k)

 µ s+1

K

KI
s

B s()
A s()

Fig. 1: Schema of derivative filter.

Where

/(3 20)dTµ ≅ ÷ ,

IK - integral gain,

DK - derivational gain,

()pF s - transfer function of controlled system.

Control rule for PID controller with derivative filter :

() () ()
1

I DK K s
U s K E s Y s

s sµ
 = + − +

.

After substitution
2(1)

(1)s

z
s

T z

−=
+

we obtain control rule

for PSD algorithm:

1 2 1 2
0 1 2 0 1 2

1 2
0 1 2

() ()
()

e e e y y yd d z d z E z d d z d z Y z
U z

c c z c z

− − − −

− −

 + + + + + =
+ +

in Z – transformation. This after backward transfor-
mation gives following recursive control rule:

1 2 0
0

1 2 0

1 2

1
() ((1) (2) ()

(1) (2) ()

(1) (2))

e

e e y

y y

u k c u k c u k d e k
c

d e k d e k d y k

d y k d y k

= − − − − +

 + − + − +

 + − + −

 (18)

where

0 4 2 sc Tµ= + , 1 8c µ= − , 2 4 2 sc Tµ= − ,
2

0 4 2 2e s I s I sd K KT K T K Tµ µ= + + + ,

2
1 8 2e I sd K K Tµ= − + , (19)

2
2 4 2 2e s I s I sd K KT K T K Tµ µ= − − + ,

0 4y Dd K= − , 1 8y Dd K= , 2 4y Dd K= −

are parameters of (18).

2.3.2 Module implementation

We can implement an algorithm which can be em-
ployed in discretization of PID controller to PSD
form. Part of the module that handles this specific
task can be summarized into next steps:

1. Acquisition of PID controler parameters K, TI, TD,
sampling periodsT (and filter parameterµ).

2. Parameters q0, q1, q2 computation based on (13),
(14), (15) or computation of parameters for PSD
with derivative filter based on (19) .

And using (17) we can compute control input()u k .

This part of module can be described in following
steps:

1. Acquisition of control input (1)u k − and control

constraint maxu (minu) and control error ()e k and

(1)e k− from another module.

2. Computation of control input()u k based on (17).

3. If max()u k u>= (or min()u k u>=),

then

() (1)i iu k u k= − and max()u k u= (or min()u k u=).

Or if we are using PSD with derivative filter we can
compute ()u k using (18) with following implementa-

tion:

1. Acquisition of control inputs(1)u k − , (2)u k − ,

control errors ()e k , (1)e k− , (2)e k− and outputs

()y k , (1)y k − , (2)y k− from another module.

2. Computation of control input()u k based on (18).

If we want to implement discretization of P, PI, PD
controllers we can do it by analogy deriving from
implementation of discretization of PID controler.

2.4 Closed Loop Simulation module CLS

Module inputs:

- matrixes A, B, C, D that describes continuos lin-
ear dynamic system and sampling periodsT

- controller parameters K, TI, Td, µ

- vector of reference values yr

- simulation time span 0 , ft t

- control input ()u k

Module outputs:

- vector of control inputs u

- vector of control errors e

- vector of output values y

2.4.1 Module analysis

As we know from automatic control theory, some
dynamic systems can be controlled by PID control
algorithms. For successful PID control we need to
obtain a set of parameters for these algorithms by

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-8, 037.pdf

538

using convenient method of synthesis. The main ele-
ments of the control algorithm are represented by
 (6) and (7). Using these formulas we can
compute values of state and output variables for each
step in an iterative computation. Similarly using (17)
or (18) we can obtain control intervention of the con-
troller for each step k.

Schema of closed loop control structure is demon-
strated on Fig. 2.

yr(k) e(k)
 Digital

controller
Controlled
 esyst m

 Sensor

u(k) y(k)

z1(k)

z2(k)

yo(k)

Fig. 2: Schema of closed loop control

yr(k) - desired value

e(k) - control error

u(k) - control input aquired using (17) or (18)

z1(k) - perturbation caused by outside world

y(k) - system output which can’t be measured it’s
aquired using (3)

yo(k) - observed system output

z2(k) - noise that is affecting the sensor

In this module we will employ C2D and PID2PSD
which we described earlier. We can for example use
Naslin or Graham-Lanthrop method for controler
synthesis stated in (Madarász 2007), (Mikleš 1986).

2.4.2 Module implementation

Implementation of velocity algorithm, which is using
selected methods of synthesis (Naslin and Graham-
Lanthrop) and was verifyied on models of dynamic
systems (simple mechanic oscillator and vagon set in
(Dolinský 2008) in closed loop control using lan-
guage C#, can be described in following steps.

1. Acquisition of system model parameters (ma-
trixes A, B, C, D and sampling periodsT).

2. Transformation of matrixes A, B, C, D to their
discrete equivalents F, G, H, J.

3. Acquisition of controller parameters (controller
type and subsistent parameters).

4. Acquisition of reference, perturbation and noise
signal parameters (description in user manual
(Dolinský 2008).

5. Reference signal generation.

6. Perturbation signal generation (if was defined).

7. Noise signal generation (if was defined).

8. Recurent computation of response of controlled
system to reference signal.

Implementation of recurent computation of response
of controlled system to reference signal (step number
8) is described in following steps.

8.1. 0k ←

8.2. () () ()r oe k y k y k← −

8.3. Control intervention computation according to
(17) (or (18) if we are using derivative filter)
using PID2PSD module.

8.4. Suming pertubation and control intervention (if
perturbation was defined).

8.5. Computation of response of controlled system
to control intervention with pertubation accord-
ing to (3).

8.6. Observed controlled system output computation
(value of controlled system output summed with
noise).

8.7. Saving (1)e k− (and if we are using derivative

filter saving (1)u k − and (1)y k −).

8.8. Saving e(k) and u(k) (and if we are using deriva-
tive filter ()y k).

8.9. If number of samples of reference signal is not
exceeded continue with step 2 and 1k k← + .
Otherwise end.

2.5 Nonlinear Differential System Solving module
NDSS

Module inputs:

- starting conditions 0 0(,)tf x ,

- vector of nonlinear functions(,)tf x ,

- sime span 0 , ft t ,

- initial step hmin and minimal step h.

Module outputs:

- vector of final values ()ftf

2.5.1 Module analysis

This module enables us to simulate nonlinear model
of dynamic system described by systems of nonlinear
differential equations.

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-8, 037.pdf

539

1
1 1

2
2 1

1

(, ,...,)

(, ,...,)

.

.

.

(, ,...,)

n

n

n
n n

dx
f t x x

dt
dx

f t x x
dt

dx
f t x x

dt

=

=

=

Module implements numerical method Runge– Kutta
of 4th order. According to (Buša et al. 2006) this
method is based on approximation expressed in fol-
lowing form.

1 2 3 4
, 1 ,

2 2

6i j i j

k k k k
x x+

+ + +
= + (20)

where:

()if t - i-th nonlinear function (1,2,...,i n=)

0()if t - initial value of i-th function

()i ff t - final value of i-th function

,i jx - value of i-th state variable in step j,

, 1i jx + - value of i-th state variable in step 1j + .

Values kk are:

 1 ,. (,)i i jk h f t x=

 2 , 1. (/ 2, / 2)j i jk h f t h x k= + + (21)

 3 , 2. (/ 2, / 2)j i jk h f t h x k= + +

 4 , 3. (,)j i jk h f t h x k= + +

To check if the step is small enough we can use fol-
lowing.

2 3 1 2| () /() |k k k k− − (22)

If value (22) is approximately equal to 0.05 we will
preserve last used step. If (22) is considerable greater
than 0.05 we will reduce steph .

2.5.2 Module implementation

1. Initialization of variables (initial time, final time,
step, minimal step, initial contditons, collection
of diferential equations).

2. If step doesn’t meet the precision conditions and
is greater than minimal step than we’ll reduce
step by half.

3. Computation of parameterskk according to (21).

4. If step doesn’t meet the precision conditions and
is greater than minimal step than we’ll continue
with step 2 otherwise we’ll continue with step 5.

5. Actual time is increased by steph .

6. Computation of values, 1i jx + according to (20).

7. If actual time is lesser than final time we‘ll con-
tinue with step 2 otherwise end.

3 APPLICATION OF DESIGNED PROGRAM
MODULES TO PHYSICAL SYSTEM

BALL & PLATE

3.1 Application analysis

While implementing our application we have to re-
spect that the real model is nonlinear and that it’s to
our benefit to simulate both linear and nonlinear
model behaviour. Therefore it’s required to create
two applications that will integrate and control im-
plemented program modules as different modules will
be used for simulation and control in each case.

3.2 Analysis of dynamic system Ball & Plate

This model is represented by a ball rolling on a plate.
This plate is controlled by a couple of step motors.
Position of the ball is scaned by a camera. Images are
analysed by a computer which will determine the ball
location and consecutively will determine and send
out appropriate voltage to step motors. These motors
will lean the plate to desired angle and force the ball
to move in appropriate direction so the desired results
would be achieved.

Schema from (Humusoft: CE151 Ball and Plate Ap-
paratus – Educational Manual 1996 - 2004) is shown
on Fig. 3, block schema is on Fig. 4.

Fig. 3: Schema of Ball & Plate and apparatus

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-8, 037.pdf

540

Computer m
Servo
syste Ball & plate

yx(t)

yy(t)

ua(t)

ub(t)

a(t)

b(t)

x(t)

y(t)

Fig. 4: Block schema of Ball & Plate

Variables description:

yx(t), yy(t) - ball location on plate determined from
acquired image [m, m]

ua(t), ub(t) - voltages controlling individual steping
motors [V, V]

a(t), b(t) - angles representing inclination of plate
 [rad, rad]

x(t), y(t) - ball real position [m, m]

As there is no feedback between ball position and
plate inclination it’s possible to divide the model into
two separate parts servomechanism and ball freely
rolling on the plate. Matematical model without ser-
vomechanism was derived in (Humusoft: CE151 Ball
and Plate Apparatus – Educational Manual 1996 -
2004) from basic Euler - Lagrange equation.

i
i i i

d T T V
Q

dt q q q

∂ ∂ ∂− + =
∂ ∂ ∂ɺ

where

qi - the i-th generalized coordinate

iqɺ - the first derivation of the i-th generalized

coordinate by time

T - kinetic energy of the system

V - potential energy of the system

Qi - the i-th generalized force

Detailed derivation is in (Humusoft: CE151 Ball and
Plate Apparatus – Educational Manual 1996 - 2004).

Finally we get a system of four differential equations
of the second grade.

2
2

: () () sin 0b

b

I
x m x m y x mg

r
αβ α α+ − + + =ɺɺ ɺɺɺ (23)

2
2

: () () sin 0b

b

I
y m y m x y mg

r
αβ β β+ − + + =ɺ ɺɺɺɺ (24)

2() (2)

cos cos
p bI I mx m xy xy xy xx

mgx F dα

α β β β α
α α

+ + + + + +

+ =

ɺɺ ɺ ɺɺɺ ɺɺ ɺ ɺ

 (25)

2() (2)

cos cos
p bI I mx m xy xy xy xx

mgx F dβ

β α α α β
β β

+ + + + + +

+ =

ɺɺ ɺɺɺ ɺ ɺɺ ɺ ɺ

 (26)

where

x, y - ball coordinates on the plate [m]

rb - ball radius [m]

ω - vector of ball angular velocity [rad/s]

α, β - angles of plate inclination [rad]

Ib - ball inertia [kg.m2]

Ip - plate inertia [kg.m2]

m - ball mass [kg]

g - gravitional acceleration [ms-2]

Fα - force influencing the plate in the direction
of axis x [N]

Fβ -force influencing the plate in the direction
of axis y [N]

Ball motion is described by (23) and (24) which de-
scribe dependence of ball acceleration from angle and
angular velocity of the plate inclination. Eqations
(25) and (26) are describing how the plate inclination
dynamics is influenced by the external driving force
and the position and speed of the ball. According to
the B&P manual it’s possible to simplify the dynam-
ics of B&P. Using the assumptions from manual we’ll
finally obtain following model.

2

2

5
sin

7 b

d x
g K

dt
α α= ≈

2

2

5
sin

7 b

d y
g K

dt
β β= ≈

3.2.1 Servo system

Block schema of the servo system from (Humusoft:
CE151 Ball and Plate Apparatus – Educational
Manual 1996 - 2004) is on Fig. 5. Due to limitations
of the system this part contains several nonlinear
components.

Fig. 5: Block schema of servo system

The first nonlinear component is a filter called rate
limiter which is restricting the scope of speed of
change (derivation) of input voltage. This filter solves
the problem of software driver. The problem dwells
in following. Stack in which we store wanted value
can be actualized only after reaching the desired posi-
tion. In other words we cannot exceed nominal speed
of stepping motors which is determined by frequency
of impulses which are supplyied by driving card of

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-8, 037.pdf

541

stepping motors. We can expess it matematically in
following statements.

() (1)

s

u k u k
rate

T
α α− −

=

() (1)f s fu k T R u kα α= + + − rate < +R

() (1)f s fu k T R u kα α= − + − rate < -R

()fu k uα α= otherwise.

where

uα - filter input

uαf - filter output

k - step

�t - sampling period

R - rate treshold

Additional nonlinear dynamics are caused by a satu-
ration filter called amplitude limiter which ensures
that maximum slope of the plate cannot be exceeded.
Input signal is limited into interval <-1,1> so after
multiplying it by static gain it fits into plate inclina-
tion limits. Finally we have to respect the fact that the
stepping motors have constant speed of stepping.
Hence we need to add an element that will be insensi-
tive to certain range of values and beyond this inter-
val output will be a positive or negative constant
value thus modeling the motion of the motors up-
wards or downwards.

System parameters

Parameters of dynamic system can be measured di-
rectly or are known from (Humusoft: CE151 Ball and
Plate Apparatus – Educational Manual 1996 - 2004).

Normalized parameters are following.

K overall system gain [s -2]

ω nominal speed of servo system [s -1]

Tm time constant of servosystem [s]

Kα static gain [rad/MU]

Kb B&P system gain [ms-2/rad]

Kx ball position sensor constant [MU/ m]

Linear model

State vector:

1
1

2

3

' []

' [s]

' []

x

x

x y ball s position

x y ball s velocity

x plate s inclinationα

−

 −
 = =
 −

x ɺ

Input uα ... desired plate angle sent out from Mat-
lab 1, 1uα ∈< − + >

Output yx ... ball position read to Matlab
 1, 1xy ∈< − + >

State equations

uα= +ɺx A x B

0 1 0 0

0 0 0

1 1
0 0

m m

K u

T T

α

= +

 −

ɺx x (27)

[]1 0 0xy = =C x x (28)

Linear model transfer function:

2 2
()

(1) (1)
xx

m m

K K KY K
F s

U s T s s T s
α β

α

= = =
+ +

. (29)

System characteristics

The B&P model is a 3rd order system with the 2nd
order of astatism

Characteristic nonlinearities:

- rate limiter

- saturation

- time constant dependent on the magnitude and fre-
quency of an input signal

unmodelled properties :

- friction

- defects in the ball and/or plate surface

3.3 Linear Ball & Plate Control Simulation module
LBPC

Module inputs:

- PID parameters K, Td, Ti, µ

- sampling period sT ,

- simulation time span 0 , ft t ,

- noise and perturbation parameters.

Module outputs:

- vector of control input for x and y axis ux, uy,

- vector of position for x and y axis yx, yy,

- vector of observed position for x and y axis yox,
yoy,

- vector of control error for x and y axis ex, ey.

3.3.1 Module analysis

When we are assuming linear model of Ball & Plate
we can compute system states and outputs using (27)
and (28). Although Ball & Plate is a MIMO (Multi
Input Multi Output) dynamic system it’s possible to
divide it into two SISO dynamic systems (ball motion
on the plate in direction of axis x and motion in direc-

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-8, 037.pdf

542

tion of axis y). Therefore we’ll conduct analysis only
for one coordinate (rules for the second cooridate are
the same).

yr(k) e(k)
 Digital
 controller

 LTI B&P
 model

Sensor

u(k) y(k)

z1(k)

z2(k)

yo(k)

Fig. 6: Cloosed loop control of linear Ball & Plate
model

yr(k) - control input(reference trajectory for one
axis)

e(k) - control error

u(k) - control input which is computed from (17)
or (18)(voltage supplied to stepping motor
which controls inclination of plate in direc-
tion of one axis)

z1(k) - perturbation that affects ball position

y(k) - output (ball position) which is computed
from (3)

yo(k) - observed output (ball position influenced
by noise)

z2(k) - noise affecting the sensor

It might appear that perturbation and noise are the
same and can be considered as one signal but there is
difference in character of those signals. Character of
perturbation signal is deterministic while character of
noise is pseudorandom although its amplitude is lim-
ited. We can use perturbation to simulate jumping
and sliding of the ball on the plate as those phenom-
ena are present in real model. Noise can be used to
simulate behaviour of camera and imperfections of
image recognition algorithm. Synthesis of control is
based on transfer function (29).

PID controller designed by Naslin method has fol-
lowing parameters K = 0.125, Td = 4, Ti = 8.

Corresponding parameters of PSD controller when
sampling period is Ts = 0.1 are:

q0 = 5.1257, q1 = -10.124, 2 5q = .

Control rule for PSD controller is following:

() (1) 5.1257 () -10.124 (1) 5 (2)u k u k e k e k e k= − + − + − .

PID controller designed by Graham-Lanthrop method
has following parameters K = 1.743, Td = 0.494, Ti =
1.098.

Corresponding parameters of PSD controller when
sampling period is Ts = 0.04 are:

q0 = 23.3, q1 = -44.76, q2 = 21.52.

Control rule for PSD controller is following:

() (1) 23.3 () -44.76 (1) 21.52 (2)u k u k e k e k e k= − + − + − .

3.4 Module implementation

To simulate closed loop circuit for both axes we can
use module CLS which was described earlier. But we
have to modify the implementation of recursive com-
putation of response of controlled system to follow-
ing form.

7.1. 0k ←

7.2. () () ()r oe k y k y k← −

7.3. Control intervention computation according to
(17) (or (18) if we are using derivative filter)
using PID2PSD module.

7.4. Computation of state vector according to the
first equation of (3),

7.5. Summing perturbation and ball position (if per-
turbation was defined).

7.6. Limitation of the ball position.

7.7. Computation of response of the system accord-
ing to second equation in (3).

7.8. Computation of observed output (value of out-
put summed with noise),

7.9. Saving (1)e k− (and if we are using derivative

filter saving (1)u k − and (1)y k −).

7.10. Saving e(k) and u(k) (and if we are using de-
rivative filter ()oy k).

7.11. If number of samples of reference signal is not
exceeded continue with step 2 and 1k k← + .
Otherwise end.

3.5 Nonlinear B&P Control Simulation Module
NBPCSM

Module inputs:

- PID parameters K, Td, Ti, µ,

- Sampling period sT ,

- Simulation time span 0 , ft t ,

- noise and perturbation parameters

Module outputs:

- vector of control input for x and y axis ux, uy,

- vector of position for x and y axis yx, yy,

- vector of observed position for x and y axis yox,
yoy,

- vector of control error for x and y axis ex, ey.

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-8, 037.pdf

543

3.5.1 Module analysis

When we are assuming nonlinear model of Ball &
Plate we have to compute system states and outputs
using (23) a (24) which are describing behaviour of
the nonlinear dynamic system.

As not the forces Fα and Fβ but directly the angles α
and β are system inputs. This is due to the fact that
the frequency of a stepper is below the acceleration
limit. No steps can be lost and the magnitude of load
moment cannot affect the motor position. This as-
sumption results in omitting the equations (25) and
(26) as stated in (Humusoft: CE151 Ball and Plate
Apparatus – Educational Manual 1996 - 2004). But
of course we still have to respect limits of dynamic
system.

yry(k) ey(k)

 y
Digital controller

 for axis

model
Nonlinear

 B&P

Sensor
for y axis
location

ux(k)

yy(k)

z1y(k)

z2y(k)

yox(k)

yrx(k)

ex(k)

Digital controller
 for axis x

Sensor
for x axis
location

uy(k)

yx(k)

z1x(k)

z2x(k)

yoy(k)

Fig. 7: Cloosed loop control of nonliear Ball & Plate

yrx(k) - control input (reference trajectory for axis
x)

ex(k) - control error for axis x

ux(k) - action input which is computed from (17)
or (18) (voltage supplied to stepping motor
which controls inclination of plate in direc-
tion of x axis)

z1x(k) - perturbation that affects ball position

 yx(k) - output for axis x (x coordinate of ball posi-
tion) which is computed from (3)

yox(k) - observed output for axis x (x coordinate of
ball position influenced by noise)

z2x(k) - noise affecting the sensor in coordinate x

Description for y axis variables can be done by anal-
ogy. To control nonlinear dynamic system Ball &
Plate we used controllers designed using transfer
function of linear model of Ball & Plate.

3.5.2 Module implementation

1. Acquisition of controller parameters (controller
type and subsistent parameters).

2. Acquisition of reference, perturbation and noise
signal parameters and sample time.

3. Reference signal generation.

4. Perturbation signal generation (if was defined).

5. Noise signal generation (if was defined).

6. Recurent computation of response of controlled
system to reference signal.

Implementation of recurent computation of response
of controlled system to reference input (step number
6) is described in following steps.

6.1. 0k ←

6.2.
() () ()

() () ()
x rx ox

y ry oy

e k y k y k

e k y k y k

← −
← −

6.3. Computation and rate and amplitude limitation
of voltages for each motor.

6.4. Computation of plate inclination angles, their
limitation, computation of difference between
present and last value and its filtration (based
on sensitivity).

6.5. Numerical integration of angles.

6.6. Computation of ball position and derivation of
ball position.

6.7. Summing perturbation and ball position (if per-
turbation was defined).

6.8. Computation of ball position affected with
noise and limitation of ball location.

6.9. Saving (1)xe k− , (1)ye k− , ()xe k , ()ye k , ()xu k ,

()yu k (if we are using derivative filter saving

also ()oxy k , ()oyy k , (1)oxy k− , (1)oyy k − ,

(1)xu k − , (1)yu k −) and plate inclination

(()kα , ()kβ) .

6.10. If number of samples of reference input is not
exceeded continue with step 2 and 1k k← + .
Otherwise end.

3.6 Application results

For simulation of control of the dynamic system Ball
& Plate we used following signals. As a controlled
input we used position of the ball and as a control
input we used ball desired positon or desired trajec-
tory. Results depend on employed controller, desired
trajectory, time span provided to cover the trajectory,
sampling period, perturbations and noise. As a per-
turbation signal we use a signal that affects ball posi-
ton. Thus we can approximate real conditions where
ball in certain moments looses contact with the plate
or is sliding. Noise in this system is considerable as
image processing by camera determining the location

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-8, 037.pdf

544

of the ball is affected by light conditions and ball
color.

In general results of control of linear model are bet-
ter. Following pictures illustrate results of linear and
nonlinear model. Simulation time was 60 seconds for
sqare and circle trajectory, 120 seconds for star and
helix and 30 seconds for position. For control of lin-
ear model we used controller designed by Graham-
Lanthrop method (K = 1.743, Td = 0.494, Ti = 1.098)

with derivative filter (
10

dTµ =), as we acquired better

results. For control of nonlinear model we used con-
troller designed by Naslin method (K = 0.125, Td = 4,
Ti = 8) without derivative filter.

Fig. 8 : Control to desired position (linear model)

Fig. 9: Control to desired position (nonlinear model)

Fig. 10: Tracking of sqare trajectory (linear model)

Fig. 11: Tracking of sqare trajectory (nonlinear
model)

Fig. 12: Tracking of circle trajectory (linear model)

Fig. 13: Tracking of circle trajectory (nonlinear
model)

Fig. 14: Tracking of star trajectory (linear model)

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-8, 037.pdf

545

Fig. 15: Tracking of star trajectory (nonlinear model)

Fig. 16: Tracking of helix trajectory (linear model)

Fig. 17: Tracking of helix trajectory (nonlinear
model)

Fig. 18: Tracking of sqare trajectory (axis x) without
filter.

Fig. 19: Tracking of sqare trajectory (axis x) with
filter.

Fig. 20: Tracking of sqare trajectory (axis y) without
filter.

Fig. 21: Tracking of sqare trajectory (axis y) with
filter.

Fig. 22: Tracking with sqare trajectory without filter.

Fig. 10 can be compared with Fig. 22 to demon-
strate effect of derivative filter when reference trajec-
tory is changing very steeply.

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-8, 037.pdf

546

4 CONCLUSION

We created and verified required modules that allow
us to transform continuous linear dynamic system to
their discrete equivalent and analyze behaviour of
these dynamic systems. Then we continued with
transformation of PID algorithm to its discrete form.
We used PSD algorithm with anti-windup and deriva-
tive filter in simulation of control in closed loop cir-
cuit. As we wanted to evaluate robustness of control
we created a program module that enables us to solve
nonlinear systems of differential equations. All these
modules were used in an application that simulates
behaviour of real physical model Ball and Plate. We
created two applications one for simulation of control
of linear model and second for nonlinear model of
dynamic system Ball and Plate. Thus we verified the
robustness of designed control. Also we showed that
while C# doesn’t directly provide functions or proce-
dures for modeling or control of dynamic system, we
can create them by ourselves. Considering the fact
that syntax of C# is very easy and thorough we can
quickly implement required functions into program
modules which can be used in an application in de-
sired way. Also we are not bound to higher program-
ming languages as Matlab. Moreover it’s possible to
use rich possibilities that platform .NET provides.

5 ACKNOWLEDGMENTS

This research has been supported by the Scientific
Grant Agency of Slovak republic under project Vega
No. 1/0617/08 Multiagent Network Control Systems
with Automatic Reconfiguration. This support is very
gratefully acknowledged.

6 REFERENCES

J. Buša, V. Pirč, Š. Schrotter. (2006). Numerické
metódy, pravdepodobnosť a matematická šta-
tistika. Košice: TU-FEI,. 166 s. ISBN 80-8073-
632-4

K Dolinský. (2008). Design and Realization of Pro-
gram Modules for Models of Dynamical Systems.
Bachelor Thesis. (supervisors: assos. prof. Ing. A.
Jadlovská, PhD, Ing. R. Lonščák), FEI TU,
Košice, (in Slovak).

L. Harsány, J. Murgaš, D. Rosinová, A. Kozáková.
(1998). Teória automatického riadenia. Brati-
slava: Slovenská Technická Univerzita Bratislava,
Fakulta elektrotechniky a informatiky. 216s. ISBN
80-227-1098-9

Humusoft: CE151 Ball and Plate Apparatus – Edu-
cational Manual. (1996-2004).

D. Krokavec, A. Filasová. (2006). Diskrétne systémy.
Košice: Elfa. 302 s. ISBN 80-8086-028-9

L. Madarász, M. Bučko, L. Fozo. (2007). Základy
automatického riadenia - 1. Elfa. Košice. ISBN
978-80-8086-042-4

J. Mikleš, V. Hutla. (1986) Teória automatického
riadenia. Alfa. Bratislava. ISBN 63-576-86

J.Melichar. (2008) Lineární Systémy 2 (Učební text).
ZČU Plzeň (available on inernet).

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-8, 037.pdf

547

