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Abstract: The main goal of this paper is to present the suitability of predictive control 
application on a mechatronic system. A theoretical approach to predictive control and 
verification on a laboratory Helicopter model is considered. Firstly, the optimization of 
predictive control algorithms based on a state space, linear regression ARX and CARIMA 
model of dynamic systems are theoretically derived. A basic principle of predictive control, 
predictor deducing and computing the optimal control action sequence are briefly 
presented for the particular algorithm. A method with or without complying with required 
constraints is introduced within the frame of computing the optimal control action 
sequence. An algorithmic design manner of the chosen control algorithms as well as the 
particular control structures appertaining to the algorithms, which are based on the state 
space or the input-output description of dynamic systems, are presented in this paper. Also, 
the multivariable description of the educational laboratory model of the helicopter and a 
control scheme, in which it was used as a system to be controlled, is mentioned. In the end 
of the paper, the results of the real laboratory helicopter model control with the chosen 
predictive control algorithms are shown in the form of time responses of particular control 
closed loop’s quantities. 

Keywords: ARX; CARIMA model; generalized predictive control; state model-based 
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1 Introduction 
The predictive control based on the dynamic systems’ models is very popular at 
present. In the framework of this area, several different approaches or basic 
principle modifications exist. They can be divided in terms of many different 
attributes, but mainly in terms of the used model of the dynamic system. 
Predictive control based on the transfer functions is called generalized predictive 
control (GPC) [1]. Also predictive control based on the state space dynamic 
systems models exists [2]. Both approaches use linear models. Until now some 



A. Jadlovská et al. Predictive Control Algorithms Verification on the Laboratory Helicopter Model 

 – 222 – 

modifications of basic predictive control principle have been created. Some of 
them, and other important issues like stability are mentioned in [3] or [4]. 

In this paper, we are engaged in a theoretical derivation of some predictive control 
methods based on the linear model of controlled system, and in preparing them for 
subsequent algorithmic design and verification on a real laboratory helicopter 
model from Humusoft [5], which serves as an educational model for identification 
and control algorithms verification at the Department of Cybernetics and Artificial 
Intelligence at the Faculty of Electrotechnics and Informatics at the Technical 
University in Košice. Particularly, we are concerned with the predictive control 
algorithm that is based on the state space description of the MIMO (Multi Input 
Multi Output) system [6], [7] and with generalized predictive algorithm, which is 
started from linear regression ARX (AutoRegressive eXogenous) [9] model of 
SISO (Single Input Single Output) systems. Thus it is based on the input-output 
description of dynamic systems. Moreover, we apply it to the GPC algorithm 
based on the CARIMA (Controlled AutoRegressive Integrated Moving Average) 
[8] model of the SISO system. All of mentioned control methods differ, whether 
in the derivation manner of predictor based on the system’s linear model or in 
computing the optimal control action sequence. This implies that we have to take 
an individual approach to programming them. We programmed the mentioned 
predictive control algorithms as Matlab functions, which compute the value of the 
control action on the basis of particular input parameters. This allowed us to use a 
modular approach in control. We used these functions in specific control 
structures, which we programmed as scripts in simulation language Matlab. We 
carried out communication with a laboratory card connected to helicopter model 
through  Real-Time Toolbox functions [13]. The acquired results will be presented 
as the time responses of the optimal control action and reference trajectory 
tracking by output of the Helicopter model. 

2 Theoretical Base of Predictive Control 
We introduce some typical properties of predictive control in this section. Next we 
deal with mathematical fundamentals of predictive control algorithm design and 
their programming as a Matlab functions. 

Predictive control algorithms constitute optimization tasks and in general they 
minimize a criterion 
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where u(k) is a control action, ŷ(k) is a predicted value of controlled output and 
w(k) denotes a reference trajectory. Values N1 and Np represent a prediction 
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horizon. According to [8], the value N1 should be at least 1,d +  where d is a 
system transport delay, in our case we suppose 1 1N = . The positive value Nu 
denotes a control horizon, on which the optimal control action u(k) is computed, 
whereby u pN N≤ . If the degrees of freedom of control action reduction is used in 
the predictive control algorithms, it is valid that u pN N< [6]. Values Qe(i) and 
Ru(i) constitute weighing coefficients of a deviation between system output and 
reference trajectory on the prediction horizon and control action on the control 
horizon. Next we will assume that Qe(i) and Ru(i) are constant on the entire length 
of the prediction and control horizon, and thus they do not depend on variable i. In 
terms of weighing coefficients, their single value is not important, but mainly 
ratio /u eR Qλ = . 

In some cases, the rate of control action Δu(k) is used instead its direct value u(k) 
in the criterion (1), whereby the control obtains an integration character, which 
results in the elimination of the steady state control deviation in the control 
process [6]. 

It is necessary to know the reference trajectory w(k) on the prediction horizon in 
each sample instant in predictive control algorithms. The simplest reference 
trajectory example is a constant function with desired value w0. According to [8], 
it is the more preferred form of smooth reference trajectory, whose initial value 
equals to the current system output and comes near to the desired value w0 through 
a first order filter. This approach is carried out by equations 

0( ) ( );     ( ) ( 1) (1 )w k y k w k i w k i wα α= + = + − + − ,    for 1, 2,...i = , (2) 

where the parameter 0;1α ∈  expresses the smoothness of reference trajectory.  
If 0α →  then the reference trajectory has the fastest slope, and, on the contrary,    
if 1α→  the slowest. In the case when the reference trajectory is unknown, it is 
customary to use the so-called random walk [6], where ( 1) ( ) ( )w k w k kξ+ = + , 
whereby ( )kξ  is a white noise. 

Predictive control algorithm design can be divided in two phases: 

1) predictor derivation (dynamic system behavior prediction), 

2) computing the optimal control by criterion minimization. 

The advantage of predictive control consists in the possibility to compose different 
constraints (of control action, its rate or output) in computing the optimal control 
action sequence. Most commonly, it is carried out by quadratic programming. In 
our case we used a quadprog function, which is one of functions in the 
Optimization Toolbox in Matlab and computes a vector of optimal values u by 
formula 
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1min
2

T T+
u

u Hu g u , subject to con con≤A u b . (3)  

The basic syntax for using the quadprog function to compute the vector u is 

( , , , )con conquadprog=u H g A b , (4) 

whereby a form of matrix H (Hessian) and row vector gT (gradient) depends on 
the predictive control algorithm used. It is necessary to compose the matrix 
Acon and the vector bcon in compliance with required constraints. The detail 
specification of their structures will be presented next, particularly with each 
algorithm. If the combination of more constraints is needed, the matrix Acon and 
the vector bcon are created by matrices and vectors for concrete constraint, which 
are organized one after another. The quadprog function also permits entering the 
function’s output constraints as the function’s input parameters, which abbreviates 
entering required constraints in matrix Acon and vector bcon. 

In the framework of the control process using predictive control algorithms, the 
so-called receding horizon computing is performed [6]. The point is that the 
sequence of optimal control action ( ) ( )1opt opt opt uu k u k N⎡ ⎤= + −⎣ ⎦u  is 

computed on the entire length of control horizon at each sample instant k, but only 
the first unit uopt(k) is used as the system input u(k). 

 
Figure 1 

Predictive control principle 

As we used the receding horizon principle in control algorithms, computing the 
optimal control action sequence uopt is evaluated in conformity with Fig. 1. The 
authors of this paper designed the next procedure, which is carried out within the 
frame of every control process step k: 

step 1: the assigning of the reference trajectory w on the prediction horizon, 
step 2: the detection of the actual state x(k) or output y(k) of system in specific 

sample instant, 
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step 3: the prediction of system response on the prediction horizon based on 
the actual values of optimal control action uopt(k) and state x(k) or input 
u(k) and output y(k) in previous sample instants without influence of 
next control action, the so-called system free response, 

step 4: computing the sequence of optimal control action uopt by the criterion J 
minimization with known parameters N1, Np, Nu, Q(i) and R(i), 

step 5: using uopt(k) as a system input.   
 
We implemented the introduced five steps into every type of predictive control 
algorithm with which we have been concerned, and which are introduced in the 
next particular parts of this paper. 

3 State Space Model-based Predictive Control 
Algorithm Design 

The State-space Model based Predictive Control (SMPC) algorithm predicts a 
system free response on the basis of its current state. The control structure using 
the SMPC algorithm is depicted in Fig. 2, where w is a vector of the reference 
trajectory on the prediction horizon, y0 is a system free response prediction on the 
prediction horizon, x(k) denotes a vector of current values of state quantities, u(k) 
represents a vector of control action, d(k) is a disturbance vector and y(k) is a 
vector of the system outputs, i.e the controlled quantities. 

 
Figure 2 

Control structure with SMPC algorithm 

The SMPC algorithm belongs to the predictive control algorithms family, which 
use a state space description of MIMO dynamic systems for system output 
prediction (provided that there is no direct dependence between the system input 
and output) 

( 1) ( ) ( )
     ( )   ( )

k k k
k k
+ = +

=
d dx A x B u

y Cx
,  (5) 
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(Ad is a matrix of dynamics with dimension nx nx× , Bd is an input matrix 
of dimension nx nu× , C is an output matrix of dimension ny nx× , x(k) is a vector 
of state quantities with length nx , u(k) is a vector of inputs with length nu , y(k) 
is a vector of outputs with length ny , where variables nx, nu and ny constitute the 
number of state quantities, inputs and outputs of dynamic system) and compute 
the sequence of optimal control action u(k) by the minimization of criterion 

[ ] [ ]
1

2 2
MPC

1

ˆ( ) ( ) ( 1)
p uN N

e u
i N i

J Q k i k i R k i
= =

= + − + + + −∑ ∑y w u . (6) 

The coefficients in the criterion (6) have the same meaning as in the criterion (1); 
however they denote vectors and matrices for multivariable system (5). We also 
assume equal weighing coefficients for each output/input of the system. 

 
Figure 3 

Flow chart of SMPC algorithm function 
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We programmed the SMPC algorithm as a Matlab function on the basis of the 
designed flow chart diagram, depicted in Fig. 3. The SMPC algorithm design is 
divided into two phases in compliance with the procedure mentioned in Section 2. 

It is clear from the flow chart that control algorithms offer the optimal control 
action, computing with and without respect to required constraints of control 
action value, its rate or output of dynamic system. The mathematical description 
of two phases of SMPC algorithm design is described in next subsections 3.1 and 
3.2. 

3.1 Predictor Derivation in SMPC 
The state prediction over the horizon Np can be written according to [6] in form 

2

3 2

ˆ ˆ( 1) ( ) ( )
ˆ ˆ( 2) ( 1) ( 1)  ( ) ( ) ( 1)
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Then the system output prediction is 
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that can be written in a matrix form 

ˆ ( )k= +y Vx Gu , (9) 

where 

1

ˆ ˆ ˆ ˆ( 1) ( 2) ( ) ,  ( ) ( 1) ( 1) ,

,   .

T T

p p

d d

Np Np
d d d d

k k k N k k k N

−

⎡ ⎤ ⎡ ⎤= + + + = + + −⎣ ⎦ ⎣ ⎦
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

y y y y u u u u

CA CB 0
V G

CA CA B CB

 

In equation (9) the term ( )kVx  represents the free response y0 and the term Gu  
the forced response of system. In the case that the control horizon Nu is considered 
during computing the optimal control action sequence, it is necessary to multiply 
the matrix G  by matrix U from right: ,←G GU where matrix U has form 
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⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

I

U I

I

 with dimension [ ]p unu N nu N⎡ ⎤⋅ × ⋅⎣ ⎦ . (10) 

The basic mathematical fundamental for the first part of the flow chart diagram 
depicted in Fig. 3 has been shown in this section. 

3.2 Computation of the Optimal Control Action in SMPC 
In this section, the mathematical fundamental for the second part of the flow chart 
diagram depicted in Fig. 3 is derived. 

The matrix form of criterion JMPC (6) is 

( ) ( )MPC ˆ ˆT TJ = − − +y w Q y w u Ru ,  (11) 

where matrices Q and R are diagonal with particular dimension and created from 
weighing coefficients Qe and Ru (Q = QeI, R = RuI). 

After the predictor (9) substitution into the criterion  (11) and multiplication we 
can obtain the equation 

( ) ( ) ( )MPC ( ) ( )TT T T TJ k k c⎡ ⎤ ⎡ ⎤= + + − + − +⎣ ⎦⎣ ⎦u G QG R u Vx w QG u u G Q Vx w , (12) 

from which on the basis of condition of minimum 
!

MPCJ∂
=

∂
0

u  
and with 

using equations for vector derivation [6] 

( ) ( ) ( ),    ,     ,T T T T T∂ ∂ ∂
= = = +

∂ ∂ ∂
u Hy Hy y Hu H y u Hu Hu H u

u u u
 (13) 

it is possible to derive an equation for the sequence of optimal control action 
1−= −u H g , (14) 

where T= +H G QG R   and ( )( ) TT k= −g Vx w QG . 

It is also possible to ensure the rate of control action Δu weighting in the criterion 
(11) by Δu expression with formula i kΔ = −u D u u , where 
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Subsequently T T
i i= +H G QG D RD  and ( )( ) TT T

k ik= − −g Vx w QG u RD . 

It is necessary to use the quadprog function (4) for computing the optimal control 
action sequence, which should be limited by the given constraints, whereby the 
particular values of matrix H and vector g depend on the control action weighting 
manner in the criterion (11). It is necessary to compose matrix Acon and vector bcon 
in compliance with required constraints: 

- for the rate of control action constraints min maxu u uΔ ≤ Δ ≤ Δ  

i
con

i
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= ⎜ ⎟−⎝ ⎠

D
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, (16) 

- for the value of control action constraints min maxu u u≤ ≤  

con
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= ⎜ ⎟−⎝ ⎠

I
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I
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min
con

u
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⎛ ⎞
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- for system output constraints min maxy y y≤ ≤  

con
⎛ ⎞

= ⎜ ⎟−⎝ ⎠

G
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G
, max

min

( )
( )con

y k
y k

−⎛ ⎞
= ⎜ ⎟− +⎝ ⎠

Vx
b

Vx
1
1

, (18) 

where I  is an unit matrix, 1 denotes an unit vector, Di and uk are the matrix 
and vector from equation (15), G and Vx(k) are from predictor equation (9). 

4 Predictive Control Algorithm Based on the ARX 
Model Design 

This algorithm belongs to set of generalized predictive control (GPC) algorithms, 
i.e. it is based on the input-output description of dynamic systems. 

Particularly, this algorithm is based on the regression ARX model 
1 1( ) ( ) ( ) ( ) ( )z zA z y k B z u k kξ− −= + ,  (19) 
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where Bz(z-1) is m ordered polynomial numerator with coefficients bi, Az(z-1) is n 
ordered polynomial denominator with coefficients ai, u(k) is an input, y(k) is an 
output of dynamic system and ξ(k) is a system output error or a noise of output 
measurement [9]. 

The control structure with GPC algorithm is depicted in Fig. 4, whereby the 
meaning of particular parameters is the same as in Fig. 2. Additionally, un and yn 
are vectors of control action values and system output values in n 
previous samples; n is system’s order. 

The flow chart, which served as the basis for programming the function of SMPC 
algorithm (depicted in Fig. 3) is very similar to the flow chart for algorithmic 
design of GPC algorithm considered in this paper. However, they differ each other 
in some blocks (steps), which treat the specific data of GPC algorithm. 

 
Figure 4 

Control structure with GPC algorithm 

The next subsections contain the mathematical description of two phases of the 
GPC algorithm based on the ARX model design. 

4.1 Predictor Derivation in GPC Based on the ARX Model 
According to [9], provided that 0 0b =  along with ( ) 0kξ = , we can express the 
output of dynamic system in sample k + 1 from the ARX model  (19) by 
equation 

1 1
( 1) ( 1) ( 1)

n n

i i
i i

y k b u k i a y k i
= =

+ = − + − − +∑ ∑ . (20) 

We are able to arrange (20) into a matrix form: 
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which represents a “pseudostate“ space model of a dynamic system [10]. 

By the derivation mentioned in [10] or [12], it is possible to express the predictor 
from the pseudostate space model as 

0
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, (22) 

where y0 introduces the free response and GNpu represents the forced response of 
the system. Following the control horizon length, it is necessary to create a 

p uN N× matrix U. It is recommended to right multiply U with GNp. Thus, we 
obtain a matrix ,Np=G G U  which ensures that the optimal control action will be 
considered over the control horizon in computing the optimal control action 
sequence. The final matrix form of predictor thus will be 

0ˆ  = +y y Gu .  (23) 

4.2 Computation of the Optimal Control Action in GPC Based 
on the ARX Model 

The algorithm for SISO system minimizes the criterion 

[ ]{ } [ ]{ }
1

2 2
ARX

1

ˆ( ) ( ) ( 1)
p uN N

e u
i N i

J Q y k i w k i R u k i
= =

= + − + + + −∑ ∑ , (24) 

which in contrast to the SMPC algorithm powers also weighing coefficients. 

The criterion JARX (24) has the matrix form 
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( )ARX

ˆ
ˆ( )

T
T TJ

−⎛ ⎞ ⎛ ⎞⎛ ⎞
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where the matrices Q and R are created from weighing coefficients Qe and Ru with 
dimensions p pN N×  and u uN N× . 

According to [10], it is sufficient to minimize only one part: 

0
k

ˆ ( )
J

− −⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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u
R u R

. (26) 

According to [10], the minimization of Jk (26) is based on solving the algebraic 
equations, which are written in a matrix form, when the value of control action u 
or its rate ∆u is weighted in the criterion JARX (25): 
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Since the matrix S is not squared, it is possible to use pseudo-inversion for the 
optimal control u computing, which is the solution of the system of equations (27) 

1( )T T−=u S S S T  (28) 

or according to [11], by the QR-decomposition of matrix S, where a 
transformational matrix Qt transforms the matrix S  to upper triangular matrix St 
as shown in Fig. 4: 

             /

 

T
t

T T
t t

tt

z

= ×

=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠0
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Q Su Q T
TS

u
T

 (29) 

 
Figure 5 

Matrix transformation with QR decomposition 

It results from above-mentioned that the optimal control u can also be computed 
by formula 

1
t t
−=u S T .  (30) 
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The matrix H and vector g, which are the input parameters of quadprog function 
(if the optimal control computing with constraints is carried out), have the 
following form with u or ∆u weighted in the criterion JARX (25) 

0 ( )

T T T

T T T

= +

= −

H G Q QG R R
g y w Q QG

    or    
0 ( )

T T T T
i i

T T T T T
k i

= +

= − −

H G Q QG D R RD

g y w Q QG u R RD
 (31) 

and the matrix Acon and vector bcon are as well as in previous algorithm given by 
equations (16), (17), (18), but the system free response is constituted by vector 0y  
instead of the term ( )kVx . 

5 Predictive Control Algorithm Based on the 
CARIMA Model Design 

Similarly to generalized predictive control (GPC) algorithm based on the ARX 
model, this algorithm also belongs to the GPC algorithms family, but it is based 
on the CARIMA model of dynamic systems 

1
1 1 ( )

( ) ( ) ( ) ( 1) ( )z
z z

C z
A z y k B z u k kξ

−
− −= − +

Δ
, (32) 

Where, in contrast to the ARX model, Cz(z-1) is multi-nominal and 11 z −Δ = −  
introduces an integrator [8]. 

According to [8], the criterion that is minimized in this GPC algorithm has the 
form 

[ ]
1

2 21
CARIMA

1

ˆ( ) ( ) ( ) ( 1)
p uN N

i N i

J P z y k i w k i u k iλ−

= =

⎡ ⎤= + − + + Δ + −⎣ ⎦∑ ∑ , (33) 

where in contrast to the previous algorithm, λ is a relative weighing coefficients 
that expresses a weight ratio between the deviation ( ) ( )y k w k−  and the control 

action u(k). 1( )P z− provides the same effect as equation (2) in the first part of 
paper. According to [8], the corresponding first order filter for constant reference 

trajectory is 
1

1 1( )
1

zP z α
α

−
− −

=
−

, where 0;1α ∈ . 

Next, we will restrict ourselves to 0α = , i.e. 1( ) 1P z− = . 
The next subsections contain the mathematical description of two phases of the 
GPC algorithm based on the CARIMA model design. 
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5.1 The Predictor Derivation in GPC Algorithm Based on the 
the CARIMA Model 

According to [8], the output of the dynamic system that is defined by equation 
(32) in sample instant k + 1 is given by the following equation (for notation 
convenience without z-1): 

( ) ( 1) ( )z z

z z

B C
y k j u k j k j

A A
ξ+ = + − + +

Δ  
. (34) 

On the basis of the derivation mentioned in [8] and with polynomial dividing 
11

1 1
1 1

( )( )
( )

( ) ( )
jz

j
z z

F zC z
E z z

A z A z

−−
− −

− −= +
Δ Δ

  and  
1 1 1

1
1 1

( ) ( ) ( )( )
( ) ( )

z j j
j

z z

B z E z zG z z
C z C z

Γ− − −
− −

− −= +  

or alternatively by solving diophantine equations 

   a   j j
z j z j z j j z jC E A z F B E G C z Γ− −= Δ + = +  

we are able to express the j steps predictor in the matrix form 

0ˆ = Δ +y G u y ,  (35) 

in which the rate of control action ∆u is present directly. 

The form of the matrix G is 

0

1 0

0

1 0

0 0
0 0

,
0

pN

g
g g

g
g g−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

G  

where coefficients gi can be obtained by division /B AΔ  and y0 is the free 
response of system. If we take value N1 into consideration, we will able to remove 
first 1 1N −  rows of matrix G. Moreover, regarding the control horizon, only the 
first Nu columns of matrix G are necessary for the next calculations. Thus, the 
reduced matrix G will have dimension 1( 1)p uN N N− + × [8]. 

5.2 Computation of the Optimal Control Action in the GPC 
Algorithm Based on the CARIMA Model 

It is possible to express the criterion JCARIMA (33) in the matrix form 

CARIMA ˆ ˆ( ) ( )

  ( )  ( )

  2 ,  

T T

T T

T T

J

c

λ

λ

= − − + Δ Δ =

= Δ + − Δ + − + Δ Δ =

= + Δ + Δ Δ
0 0

y w y w u u

G u y w G u y w u u

g u u H u

 (36) 

where   ,   ( ) ,T T Tλ= + = −0H G G I g y w G c is a constant and I is a unit matrix. 
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If it is necessary to weigh the value of control action u in the criterion (36); it is 
possible to obtain 1 1  ,   ( )T T T T T T

i i k i iλ λ− − − −= + = − +0H G G D D g y w G u D D on the 
basis of formula (15) in the first paper. 

Following the condition of minimum 
!

CARIMAJ∂
=

∂Δ
0

u
, it is easy to express the 

equation for the optimal control action in disregard of required constraints 
1−Δ = −u H g .  (37) 

The optimal control computing with regard to the required constraints can be 
carried out by the quadprog function, whereby the matrix Acon and vector bcon are: 

- for the rate of control action constraints min maxu u uΔ ≤ Δ ≤ Δ  

obm
⎛ ⎞

= ⎜ ⎟−⎝ ⎠

I
A

I
, max

min
obm

u
u

Δ⎛ ⎞
= ⎜ ⎟− Δ⎝ ⎠

1
1

b , (38) 

- for the value of control action constraints min maxu u u≤ ≤  

obm
⎛ ⎞

= ⎜ ⎟−⎝ ⎠

L
A

L
, max

min

( 1)
( 1)obm

u u k
u u k

− −⎛ ⎞
= ⎜ ⎟− + −⎝ ⎠

1 1
1 1

b , (39) 

- for system output constraints min maxy y y≤ ≤  

obm
⎛ ⎞

= ⎜ ⎟−⎝ ⎠

G
A

G
, max 0

min 0
obm

y
y

−⎛ ⎞
= ⎜ ⎟− +⎝ ⎠

1
1

y
b

y
, (40) 

where I is an unit matrix, 1 is an unit vector and L is a lower triangular matrix 
inclusive of ones. It is necessary to realize that the vector of control action rate Δu 
is the result of optimal control computing in this case. 

Equally, as in the previous GPC algorithm, we programmed the GPC algorithm 
based on the CARIMA model as a Matlab function on the basis of the designed 
flow chart diagram in Fig. 3, with particular modifications, which are clear from 
theoretical background of the algorithm. 

6 Predictive Control Algorithms Verification on the 
Helicopter Model 

We introduced the basic principle, theoretical background and the manner of 
forming the algorithms of three different predictive control algorithms in the 
previous sections. Next we are concerned with using them in a laboratory 
helicopter model control by Matlab with implemented Real-Time Toolbox 
functions. 
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6.1 The Real Laboratory Helicopter Model 
The educational helicopter model constitutes a multivariable nonlinear dynamic 
system with three inputs and two measured outputs, as depicted in Fig. 6. 

 
Figure 6 

Mechanical system of real laboratory Helicopter model 

The model is composed of a body with two propellers, which have their axes 
perpendicular and are driven by small DC motors; i.e. the helicopter model 
constitutes a system with two degrees of freedom [5]. The movement in the 
direction of axis y (elevation = output y1) presents the first degree of freedom, and 
the second degree of freedom is presented by the movement in the direction of 
axis x (azimuth = output y2). The values of both the helicopter’s angular 
displacements are influenced by the propellers’ rotation. The angular 
displacements (φ – angle for elevation, ψ – angle for azimuth) are measured by 
incremental encoders. 

The DC motors are driven by power amplifiers using pulse width modulation, 
whereby a voltage introduced to motors (u1 and u2) is directly proportional to the 
computer output. The volatge u3 serves for controlling the center of gravity, which 
constitutes a system’s disturbance. It is necessary to note that we did not consider 
this during the design of the control algorithms. The model is connected to the 
computer by a multifunction card MF614, which communicates with the computer 
by functions of Real Time Toolbox [13]. 

The system approach of the real laboratory helicopter model and constraints of the 
inputs and outputs are shown in Fig. 7. 

On the basis of helicopter’s mathematic-physical description, mentioned in the 
manual [5], we can redraw Fig. 7 to Fig. 8, where Mep is the main propeller torque 
performing in the propeller direction,  Metp is torque performing in the turnplate 
direction, Map is the auxilliary propeller torque performing in the propeller 
direction and Metp is torque performing in the turnplate direction. 
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Figure 7 

System approach with technical parameters (constraints) of the real laboratory Helicopter model 

 

 
Figure 8 

Subsystems of the real laboratory Helicopter model 

According to mathematical description and block structure in [5], [7] or [16], it is 
possible to express the considered system’s dynamics by nonlinear differential 
equations (for simplicity we omitted (t) in inputs, states and outputs expression): 

( ) ( ) ( )

( )
( ) ( )

1 1 1 2 2 2

3 1 1 1 1 1 2 2 2 2 2 3 3 3 4

4 3
3

5 2 2 2 2 2 4 1

1 1 1 1                                                           

cos cos

1

cos

m m s s

el el g

el

x x u x x u
T T T T

x x x x x x x J u x M u x

x x
J u

x x x x x

α β γ δ η δ

α β η γ

= − ⋅ + ⋅ = − ⋅ + ⋅

= ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ − ⋅

= ⋅

= ⋅ ⋅ + ⋅ ⋅ + + ⋅( )

( )

1 1 1 1 4 3 5

6 5
3 4

1 4 2 6

cos ( ).

1
cos

1 1                                                                                          

az az

az

x x x x J u x

x x
J u x

y x y x

δ δ

π π

⋅ + ⋅ ⋅ − ⋅

= ⋅
⋅

= ⋅ = ⋅

 (41) 

where x1 is the rotation speed of main motor, x2 is the rotation speed of the 
auxiliary motor, x3 is the rotation speed of the model in elevation, x4 is the position 
of the model in elevation, x5 is the rotation speed of the model in azimuth, x6 is the 
position of the model in azimuth, Tm  and Ts are the time constants of the main and 
auxilliary motors, δel and δaz is the friction constant in elevation and azimuth. The 

1 1,1u ∈ −  V  – main motor’s volatge, 

2 1,1u ∈ −  V  – side motor’s volatge, 

3 1,1u ∈ −  V  – center of gravity input,
 

1 45 , 45y ∈ −   – position in elevation, 
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moment of gravity Mg, the moment of inertia in elevetaion Jel, and the azimuth Jaz 
depend on u3. These dependencies Mg, Jel, Jaz and parameters α1, α2, β1, β2, γ1, γ2, 
δ1, δ2, η are introduced in detail in [5] or [7]. 

Note that it is also possible to express the model dynamics of the helicopter by 
nonlinear mathematical description introduced in [7] or [16]. 

As this paper has considered predictive control algorithms based on the flow chart 
in Fig. 3 and the utilization of the linear model of dynamic system, it is necessary 
to carry out the Taylor linearization of equations (41) in an operating 
point [ ],E EP ≡ x u : 

( ) ( ) ( )
( ) ( )

C C

C

t t t
y t t

= +
=

x A x B u
C x

,    where   
E E
E E

i i
C C

j jx u= =
= =

⎡ ⎤ ⎡ ⎤∂ ∂
= =⎢ ⎥ ⎢ ⎥

∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦x x x x
u u u u

f f
A B . (42) 

For the purpose of linearization, we considered the operating point [ ],E EP ≡ x u , 
in which angular displacements in elevation and azimuth were zero: 1 0y = , 

2 0y = . The forms of matrices ,CA ,CB CC , describing the helicopter’s 
continuous state space model in operating point P are 

11 11

22 22

31 32 33 34

43 14

51 52 54 55

64 65 26

0 0 0 0 0 0 00
0 0 0 0 0 0 00

0 0 0 00 0
0 0 0 0 0 00 0

0 0 0 00 0
0 0 0 0 00 0

T

C C C

A B
A B

A A A A
A C

A A A A
A A C

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

= = =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

A B C . (43) 

Note that the experimental identification of the laboratory helicopter model, which 
resulted in linear models in state-space and input-output description, was solved in 
[17]. In our case, we used only linear models obtained from the linearization 
process. The numerical values of particular elements in matrices (43) can be 
obtained on the basis of numerical values of model parameters in (41), which are 
supplied with the model from the manufacturer. 

Subsequently, it is possible to create a discrete linear model from the continuous 
with specific sample period Ts. Then we can use the discrete linear model of 
helicopter dynamic system in the introduced control algorithms. 

3.2 Control Structures Programming for Predictive Control 
Verification on the Helicopter Model 

We carried out the control of the real laboratory helicopter model in accordance 
with the control structure for particular predictive control algorithm, which have 
been mentioned in this paper. 
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Unfortunately it is also necessary to note that the steady state deviation between 
reference trajectory and system output appeared in cases when the SMPC 
algorithm and the GPC algorithm based on the ARX model were used. Therefore, 
in order to eliminate this, we inserted a feedforward branch into the control 
structure, as seen in Fig. 9. A control component in the feedforward branch 
performed a function which generated steady state values of the main propeller’s 
motor voltage for particular angular displacement. The transient characteristic 
between the particular angular displacement and the voltage steady state value was 
obtained experimentally in [15]. 

Thus, in cases where SMPC and GPC based on the ARX model algorithms were 
used, it is possible to express the entire control action by equation: 

0( ) ( ) ( )optk k k= +u u u , (44) 

where uopt(k) is the optimal control action computed in the function of the 
predictive control algorithm and u0(k) is the control action generated by the 
feedforward controller. 

 
Figure 9 

Control structure with feedforward branch 

As has already been mentioned, we programmed each used control structures in 
the form of functions/scripts in Matlab, where the current helicopter’s state is 
obtained by communication with the laboratory card using Real Time Toolbox 
functions [13] in the control closed loop. The data obtained are utilized by the 
control algorithm, which results in the particular value of control action. This 
value is sent back to the laboratory card, thus to the real helicopter model by Real 
Time Toolbox functions again. Note that we did not use Simulnik functional 
blocks, but only Real Time Toolbox functions for communication between the 
laboratory card and the helicopter model (rtrd for reading and rtwr for writing 
data to laboratory card). 

It is necessary to note that control closed loop, which we considered, is based on 
the execution of the optimization problem in one sample period. Although it is 
possible to compute some matrices and vectors in advance, computing the system 
free response and optimal control action by quadratic programming must be 
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carried out at each sample instant. In general, optimization tasks are very time-
consuming and they require powerful computers. To comply with the defined 
sample period, we checked the calculation time spent in computing the control 
action by predictive control algorithm function at every control step. In the case 
when the calculation time exceeded the sample period, the control algorithms 
were interrupted. The multifunction card MF614 allowed to use the minimal 
sample period 1 ms. Unfortunately, in our case, with the given computer we were 
only able to use 30 ms. 

3.3 Results of Algorithm Verification on the Helicopter Model 
In this part we present the results of the real laboratory Hhlicopter model control 
as the time responses of control action and controlled model’s outputs. The next 
table illustrates the settings of variable parameters’ values of predictive control 
algorithms used. If the settings for elevation and azimuth differ from each other, 
they are written in two rows for particular algorithm in the Tab. 1. 

Table 1 
Settings of predictive control algorithms’ parameters 

Algorithms Ts Np Nu Qv Rv Constraint Weighting Fig. 

SMPC 0.03s 40 1 4 
400 

30 
4 

0.4;0.8
1;1

ue

ua

∈

∈ −
 ∆u(k) 5 

2x GPC SISO ARX 0.05s 25 
20 1 1 

10 
2 
1 

0.4;0.8
1;1

ue

ua

∈

∈ −
 ∆u(k) 6 

GPC SISO ARX 0.05s 18 1 1 1 
0.4;0.8

1;1
ue

ua

∈

∈ −
 ∆u(k) 7 

GPC SISO 
CARIMA 0.05s 10 1 3 1 

0.4;0.8
1;1

ue

ua

∈

∈ −
 ∆u(k) 7 

At this point, we wish to note that the real laboratory helicopter model control 
fulfilled the aim of control with above presented settings of algorithms. However, 
the results were markedly influenced by small changes in horizons and the 
weighing coefficients’ values. On the other hand, this did not happen in simulation 
control, which we used as a primary test of the designed algorithms. We carried 
out the simulation control of the nonlinear model (41) by numerical solving with 
Runge-Kutta fourth order method in its own Matlab function. 

In Fig. 10 are the results of the real laboratory helicopter model with two degrees 
of freedom control using the SMPC algorithm. As the model’s states are not 
measured, we used the state values estimation by Kalman’s predictor, which we 
designed on the basis of duality principle with LQ control design according to 
[14]. We used weighing coefficients Qest = 10000 and Rest = 0.001 for the 



Acta Polytechnica Hungarica Vol. 9, No. 4, 2012 

 – 241 – 

estimator’s parameters design. Also, it is necessary to note that the feedforward 
branch was incorporated in the control structure in compliance with Fig. 9. 

The results of MIMO system control are depicted in Fig. 11, too. However, two 
independent GPC algorithms for SISO systems were used as controllers, instead 
of one algorithm for the MIMO system. We designed GPC algorithms, which 
were based on the ARX model especially for elevation and for azimuth control, 
whereby we neglected mutual interactions and used only relevant states of the 
system (41). Also, the feedforward branch was incorporated in the control 
structure. 

Fig. 12 illustrates the time responses of the real laboratory helicopter model 
control only in elevation direction. The model was latched; thus it was impossible 
to move it in the azimuth direction. The results of the control with the GPC 
algorithm designed for SISO systems are depicted in the figure, with the GPC 
algorithm based on the ARX model on left and the GPC algorithm based on the 
CARIMA model on the ride. It can be seen from figure that control with the GPC 
algorithm based on the ARX model gets better results than control with the GPC 
algorithm based on the CARIMA model. However, it must be stated that the 
feedforward branch was incorporated in the control structure together with GPC 
algorithm based on the ARX model. 

The displayed results were obtained with the rate of control action ∆u(k) weighted 
in the criterion. If only the value of control action u(k) was weighted, the time 
responses were similar to their counterparts, where ∆u(k) was weighted, but  the 
deviation between system output and reference trajectory appeared. 

 
Figure 10 

Time responses of Helicopter control with SMPC algorithm 
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Figure 11 

Time responses of Helicopter control with two GPC (ARX) algorithms 

 
Figure 12 

Time responses of Helicopter control in elevation with GPC (ARX) algorithm on left and GPC 
(CARIMA) algorithm on right 

Although constraints of the controlled system input are given by range <-1; +1>, it 
is necessary to note that we reduced it to <0.4; 0.8> V for the main motor in order 
to obtain better performance of the control process. 

Similar results were obtained by classical PID control in or optimal LQ control of 
the laboratory helicopter model, which were published in [15]. 
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To accept the applicability of introduced algorithms, the comparison of the 
obtained results in Fig. 10 – Fig. 12 and the results published in [7] and [16] were 
useful, too. The time responses of the controlled system output presented in this 
article are quite similar to the results in [16], where a fuzzy logic controller was 
used. So it is possible to conclude that predictive control is a particular variant of 
intelligent control methods. 

Conclusions 

We have mentioned the theoretical basis of predictive control algorithms and the 
manner of their implementation to programming language Matlab in this paper. 
We were engaged in mathematical derivation of state space model based on 
predictive control algorithms and generalized predictive control algorithms based 
on the ARX and CARIMA models and their implementation in a control structure. 

We have implemented all the mentioned algorithms in Matlab to verify them in a 
real laboratory helicopter model control in the Laboratory of Cybernetics at the 
Department of Cybernetics and Artificial Intelligence at Faculty of Electrotechnics 
and Informatics at the Technical University in Košice. 

We have concluded from the obtained results that using GPC algorithms, which 
are based on the input-output description, seems to be preferable to algorithms 
based on the state space description of dynamic systems, mainly because it is not 
possible to measure the states of the helicopter model. Unfortunately, such 
algorithms comparing in the control of systems, whose states cannot be measured, 
depend very much on the type and settings of used parameters of the state 
estimator. 

We supported the fact that it is possible to eliminate the deviation between system 
output and reference trajectory by control with an integration character, in our 
case by weighting the rate of control action ∆u in the criterion. Unfortunately, it 
was valid in the real laboratory model control only when the GPC algorithm based 
on the CARIMA model was used and the rate of control action ∆u appeared in the 
predictor expression. In other cases, when the remaining two mentioned 
algorithms were used and the rate of control action ∆u did not appear in the 
predictor expression, but only its direct value u did, we modified the control 
structure by including the feedforward branch to control process. In this way it 
was possible to eliminate the deviation between the system output and reference 
trajectory. 

Also we believe that a reduction in the sample period or an increase in the 
prediction horizon would improve control results obtained by control with the 
GPC algorithm based on the CARIMA model. Unfortunately, due to the predictive 
control algorithms computational demands, especially if the sequence of optimal 
control action with respect to required constraints was carried out, it was 
impossible to verify this assumption in our case. 
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Although we programmed the mentioned GPC algorithms in a broad range for 
MIMO dynamic systems as well, we must point out that in the laboratory 
helicopter model control, it was preferable to neglect any mutual interactions 
between system inputs and outputs and use GPC algorithms for SISO systems 
extra for each degree of freedom. 

For future solutions to the problem of dynamic system control by predictive 
control algorithms, we suggest verifying the algorithms’ extension by a summator 
of the deviation between the system output and reference trajectory, which will be 
particularly weighed in the criterion. This solution should include the integration 
character into the control process. 

It is also necessary to note that predictive control insufficiency, which relates to 
the relatively long calculation time, is a substantial issue in fast mechatronic 
system control. We suppose it is possible to handle by explicit predictive control, 
which we also want to verify on the helicopter model. For that purpose we would 
like to use multi-parametric programming. 

On the other hand, we can accept that the mentioned nonlinear mathematical 
description of the system is not precise enough. So we also plan to use a neural 
network that would be trained from data measured on a real laboratory model as a 
nonlinear predictor in nonlinear predictive control. However, it will be hard to 
handle computational phase, where the iteration optimization task for the 
minimization of the nonlinear functions must be executed at each sample instant. 

We think the best solution can be found in some kind of combination of using a 
neural network and multi-parametric programming, as this would make it possible 
to generate nonlinear prediction by neural network and concurrently to compute 
the corresponding optimal control in advance, thus offline. We assume this way 
would permit controlling systems with a shorter sample period. 
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