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Application of neural models as controllers
in mobile robot velocity control loop

Jakub Cerkala, Anna Jadlovska
∗

This paper presents the application of an inverse neural models used as controllers in comparison to classical PI controllers
for velocity tracking control task used in two-wheel, differentially driven mobile robot. The PI controller synthesis is based
on linear approximation of actuators with equivalent load. In order to obtain relevant datasets for training of feed-forward
multi-layer perceptron based neural network used as neural model, the mathematical model of mobile robot, that combines
its kinematic and dynamic properties such as chassis dimensions, center of gravity offset, friction and actuator parameters
is used. Neural models are trained off-line to act as an inverse dynamics of DC motors with particular load using data
collected in simulation experiment for motor input voltage step changes within bounded operating area. The performances
of PI controllers versus inverse neural models in mobile robot internal velocity control loops are demonstrated and compared
in simulation experiment of navigation control task for line segment motion in plane.

K e y w o r d s: mathematical model, mobile robot, MLP neural network, direct-inverse control, posture control, DC
motor

1 Introduction

In case of planar mobile robots, the differentially
driven two-wheel chassis concept is usually used due to
its simplicity, stability and high mobility. Almost always,

the DC motors with gearboxes are used as an actuators
and their design is based on load that mobile robot repre-

sents [15, 16]. The mobile robot control in general can be
divided into two levels – the internal velocity control loop
and navigation control for motion in plane. The main goal

of the internal velocity control loop is to achieve best pos-
sible tracking of reference wheel angular velocities, which
are the outputs of navigation control. In the case of ideal

velocity tracking in both internal loops, the dynamic nav-
igation control becomes a pure kinematic control task

[2, 9, 17, 18]. Dynamic properties of mobile robot, such
as its moment of inertia or friction represents an unde-
sirable impact on its movement properties [6, 7, 10, 19].

The non-ideal reference velocities tracking results into a
position error, that is subject of minimization for naviga-
tion control [3, 4, 8]. To deal with the velocities tracking

problem in internal control loops, the common practice is
to use PI controllers, because they can be simply imple-

mented and their design rely on known or approximated
mobile robot parameters. However, if the robot parame-
ters are unknown or their approximation is not accurate,

the controller synthesis based on analytical model may
not be suitable. As an alternative, the controller design
may be based on experimentally obtained data. One of

the possible approaches is to use neural networks [11–14]
trained as an inverse models of mobile robot dynamics

corresponding to each wheel [1, 9]. The data for neural

network training can be experimentally obtained by mea-
surements on an existing mobile robot, but in order to
verify this controller design approach in the early pro-
totyping phase, it may be better to use the sufficiently
accurate mobile robot simulation model as an source of
training data. The biggest advantage of this procedure is
that controller verified in simulation can be directly used
as it is in real robot, or the whole training procedure can
be repeated with data measured on a real robot.

The main focus of this paper is to present the appli-
cation possibilities of neural networks trained as inverse
neural models used in form of independent wheel angular
velocity controllers for the two-wheel, differentially driven
mobile robot in comparison to classical PI controllers [16].
In order to achieve relevant training data, the mathemat-
ical model that forms the base of simulation model in
addition to general dynamic properties includes dynam-
ical effects of actuators and viscous friction [7, 19]. The
training data are measured in simulation experiment on
a single wheel subsystem and trained neural networks are
used in direct-inverse neural control structure for inter-
nal wheel velocity tracking loops. To verify and compare
performance of classical PI and inverse neural controllers
in internal velocity control loop, reference velocities are
computed in navigational control loop for motion in plane
on a line segment [3, 8].

2 Mobile robot model

The overall mathematical model of mobile robot with
two-wheel, differentially driven chassis may be divided
into three logical parts – the kinematic model of chassis,
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Fig. 1. Mobile robot posture and velocities definition in GCS

the dynamical model of mobile robot relevant to its center
of gravity (COG) and to the combined dynamics of DC
motors with gearboxes and viscous friction in bearings.

2.1 Kinematic model of chassis

The mobile robot chassis posture in respect to Carte-
sian global coordinate system (GCS) is depicted in Fig. 1
The position vector q defines the robot posture in GCS
plane and velocities vector v are defined as

q = [x y ϕ ]⊤ , v = [ v ω ]⊤ (1)

where x, y is the CoG and reference point P position,
ϕ is angular orientation of robot local coordinate system
(LCS) in respect to GCS, v is linear and ω is angular
velocity components of overall robot motion in plane. The
kinematic model of mobile robot is expressed as [9]

q̇ = S(q)v =⇒





ẋ

ẏ

ϕ̇



 =





cosϕ −d sinϕ
sinϕ d cosϕ
0 1





[

v

ω

]

(2)

where d is CoG offset from the LCS origin OLCS defined
in positive direction of XL . Kinematic model (2) satisfies

the kinematic constraint A(q) ∈ R
1×3 for reference point

P motion without lateral slip in form of [17]

A(q)q̇
!
= 0 =⇒ −ẋ cosϕ+ ẏ sinϕ− dϕ̇

!
= 0 . (3)

The velocities v in (2) are defined for OLCS in respect
to an instantaneous center of curvature (ICC) – the cen-
ter of an arc with changing radius Rc on which the robot
moves. Since overall robot motion depends on indepen-
dently mounted wheels, according to right and left wheel

angular velocities defined in vector η = [ωR ωL ]
⊤

the
robot overall velocities are obtained as

v =
r

2
(ωR + ωL) , (4)

ω =
r

2b
(ωR − ωL) (5)

where b is half distance between wheels. Based on defini-
tion of (4) and (5), an inverse transformation exists – the
conversion from overall velocities in v to wheel angular
velocities η is defined as

η = Dv =⇒

[

ωR

ωL

]

=

[

1

r
b
r

1

r − b
r

] [

v

ω

]

(6)

where D ∈ R
2×2 is velocity transformation matrix. The

overall velocities v and ω are naturally bounded by dy-
namical properties of mobile robot and its actuators.

2.2 Base dynamic model of robot

To derive the dynamic model for mobile robot, the
Newton-Euler approach can be used [5], but as an alter-
native, the Lagrange approach [2, 7] can be used as well,
both approaches lead to same model for vectors q and
v defined as in this paper. Based on the second Newton
law of motion, the relationships between accelerations v̇

of CoG, its velocities v and actual input torques τR, τL
are derived as a differential equations [5]

Mv̇ − dMω2 =
1

r
(τR + τL) , (7)

(Md2 + Ic)ω̇ +Mdvω =
b

r
(τR − τL) (8)

where M is robot overall mass including the wheels and
motors, Ic is overall robot moment of inertia defined in
center of gravity and d is CoG offset. The actual torques
τi for both wheels i = R,L in (7) and (8) are results of

τi = τmi − (τfi − τzi) (9)

where τmi are torques, that actuators produce, τfi is fric-
tion acting against rotation of particular wheel and exter-
nal disturbance input is represented by τzi . For practical
reasons, the equations (7) and (8) can be expressed in
matrix form

M̄(q)v̇ + V̄(q̇,q)v + F̄v = B̄(q)τm − B̄(q)τz (10)

where M̄(q) ∈ R
2×2 is inertia matrix, V̄(q̇,q) ∈ R2×2 is

centripetal forces matrix, B̄(q) ∈ R
2×2 is input transfor-

mation matrix and the wheel viscous frictions τfR, τfL are
transformed in vector F̄v ∈ R

2×1 , matrices are formed
as

M̄(q) =

[

M 0
0 Md2 + Ic

]

, B̄(q) =

[

1

r
1

r
b
r − b

r

]

V̄(q̇,q) =

[

0 −Mdϕ̇

Mdϕ̇ 0

]

, F̄v = 2
Be

r2

[

v

b2ω

]

(11)

The overall viscous friction coefficient Be and actuator
torques τmi are characterized by the parameters of used
DC motors, gearboxes and wheel bearings.

2.3 DC motor with gearbox and friction model

The electro-mechanical principal structure of DC mo-
tor with gearbox and attached load is depicted in Fig. 2.
The DC motor, which is considered in this paper drives
the robot via an ideal gearbox with input/output ratio of
1 : N .
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Fig. 2. Electro-mechanical scheme of single actuator

Motor torques produced by both motors are expressed
as vector τm in load rotation axis

τm = NKτ i =⇒

[

τmR

τmL

]

= N

[

Kτ 0
0 Kτ

] [

iR
iL

]

(12)

where Kτ is the motor torque constant and iR, iL are
rotor coil currents. From the mechanical point of view,
considered two moments of inertia can be taken into ac-
count – Jr for the motor rotor and Jl for the load at-
tached after the gearbox. The overall equivalent moment
of inertia Je , which the motor have to overcome when
changing velocity can be expressed in load axis according
to gearbox ratio as

Je = N2Jr + Jl . (13)

Similar equivalence apply for the friction or disturbance
torque. When the rotor rotates in stator, the acting vis-
cous friction can be computed by usually known coeffi-
cient Br , but for viscous friction in load axis, the coeffi-
cient Bl is unknown because it depends on used gearbox
and wheel bearings. The value of overall equivalent vis-
cous friction coefficient Be can be obtained experimen-
tally. Since viscous friction can be expressed as a linear
rising function, for steady-state velocities of load at con-
stant voltage is the viscous friction equal to coil current.

The load attached to a single actuator can be approxi-
mated in form of a full wheel with radius r and half robot
mass, based on the second Newton law of motion is the
approximation defined as

Jeω̇i +Beωi = τmi − τzi (14)

The relationship between motor input voltage ui and
rotor coil current ii is expressed as differential equation

La

dii
dt

+Raii +N
60

2π
Keωi = ui (15)

where La is rotor coil inductance, Ra is terminal resis-
tance, Ke is constant for back electro-motive force and ωi

is angular velocity of load. Actuator dynamics according
to (6) and (15) can be combined in matrix form

La

d

dt
i + Rai +NKτDv = u

where u =

[

uR

uL

] (16)

while Kτ = 60

2πKe . Based on (2), (6), (10), (12) and (16)
is the state-space model in form of

d

dt





q
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i
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0 −LaNKτD −LaRa
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+
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

u+
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0

−M̄−1B̄

0



 τz (17)

The state space model (17) is implemented in Simulink
environment and used for simulational experiments.

3 Velocity control loop

As mentioned in introduction, the main goal for the
robot internal control loops is the tracking of reference
wheel velocities and transform the task of dynamic con-
trol to simpler kinematic control problem [17], internal
control loops are illustrated in Fig. 3. The control errors
eη are defined in terms wheel angular velocities as

eη = ηref − η =⇒

[

eR
eL

]

=

[

ωRref

ωLref

]

−

[

ωR

ωL

]

(18)

The first internal velocity control loop design approach
uses classical PI controllers and the second is based on
experimental data and neural models.
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3.1 PI controllers in feedback control loop

From the controller synthesis point of view, the mobile
robot can be considered as a pair of motors, that move
attached load. Using Laplace transformation, single DC
motor with gearbox, viscous friction and attached equiv-
alent load can be expressed as a linear transfer function

Fωi/ui
(s) =

NKτ

JeLa

s2 + JeRa+BeLa

JeLa

s+
BeRa+N2K2

τ

JeLa

(19)

while for the controller synthesis is it preferred in form of

Fωi/ui
(s) =

Z

(T1s+ 1)(T2s+ 1)
(20)

where Z is system gain and T1, T2 are time constants.
Based on the transfer function (20), the parameters
r0, r−1 of PI controllers defined in continuous form

ui(t) = r0ei(t) + r−1

∫ t

0

ei(t)dt (21)

can be obtained using pole-placement method. Also, con-
tinuous controller (21) have to be discretized with an
achievable sample rate ∆tPI in order to be implemented
into mobile robot. Discrete PS controller action is in form

ui(k) = ui(k − 1) + q0ei(k) + q1ei(k − 1) (22)

where q0, q1 are equivalent discrete controller parameters.

3.2 Direct-inverse neural control structure

An alternative approach of internal velocity control
loop design is to use the inverse neural models as veloc-
ity controllers. A multi layer perceptron neural network
(MLP) with delayed samples of angular velocities feed to
input and predicted control action as output can be used,
considered neural model is depicted in Fig. 4.

Fig. 4. Neural network model for inverse controller
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The training of neural model can be realized for step

changes of input voltage in range of expected operating

area at ∆tINN sample rate, the neural MLP network [13]

is connected in General Training structure to single motor

as Fig. 5 shows.

An inverse neural model to DC motor with equivalent

load is defined in form of predicted control as

û(k) = f̂−1

[

w(k + 1) ω(k) ω(k − 1)
ω(k − 2) u(k − 1)

]

(23)

where value ω(k + 1) known during training is replaced

with reference velocity w(k+1), which then allows to use

neural model (23) as a velocity controller. While offline

training procedure, the Levemberg-Marquardt algorithm

is used and the criterion

JGT =
1

2n

n
∑

k=1

[u(k)− û(k)]2 −→ min (24)

is minimized, dataset used for training is in Fig. 6. Since

the robot is symmetric in its XL axis – the load and

friction is applied equally to both wheels, it is sufficient

to train inverse neural model only on single wheel and

use its copy for the second wheel.
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4 Navigation control loop

In order to compare both internal velocity control
loops concepts, it is appropriate to use a plane naviga-
tion control structure as a source of relevant reference
velocities. In this paper, the reference posture navigation
control concept is used [3]. The mobile robot posture in
plane is defined in its reference point P, which is chosen in
robot center of gravity with. The reference posture Tq is
characterized by position coordinates xref, yref and final
heading angle ϕref . The navigation feedback control task
is to ensure convergence of position errors eq to zero as
a function of time

deq
dt

+Kfbeq = 0 (25)

where Kfb ∈ R
2×3 is a matrix of appropriately chosen

positive gains. The control input is required in form of

vref = Kfbeq (26)

where values of Kfb depends on the definition of errors in
eq . From the practical aspect, it is convenient to express
position errors in polar coordinates

ρ =
√

(xref − x)2 + (yref − y)2 , (27)

α = tan−1
( yref − y

xref − x

)

− ϕ+ π , (28)

β = ϕref − α− ϕ (29)

where ρ is euclidean distance between points P and T, α
is heading error and β is error according to desired final
orientation in point T, situation is illustrated in Fig. 7.

Based on the definition of polar errors in (27), (28),
(29) and kinematic model of oriented point, the changes
of polar errors in respect to overall robot velocities are





ρ̇

α̇

β̇



 =





− cosα 0
1

ρ sinα −1

− 1

ρ sinα 0





[

v

ω

]

. (30)

For navigation controller chosen in form of

vref = kρρ , (31)

ωref = kαα+ kββ (32)

is the minimization of position errors eq in closed feed-
back loop characterized as





ρ̇

α̇

β̇



 =





−kρ cosα
kρ sinα− kαα− kββ

−kρ sinα



 (33)

while for the case of ρ = 0 there is no singularity and
equilibrium occurs when

[ ρ α β ]
⊤
= [ 0 0 0 ]

⊤
. (34)

According to requirement for local exponential stability
is using linearizion of (33) in equilibrium (34) possible to
define limits [3]

kρ > 0 , kβ < 0 , kα − kρ > 0 (35)

which need to be taken into account when choosing con-
troller (31) gains [3]. In navigation control implementa-
tion, it is necessary to ensure that errors α and β will
be always expressed in interval (−π;π〉 . The sample rate
may be different from ∆tPI or ∆tINN , but it depends on
the maximal velocities of the robot.

5 Experimental results

The training of inverse neural models and simulation
of navigation control is realized in Simulink environment.
Mobile robot parameters used in simulation are listed in
Tab. 1. The Faulhaber DC micromotor 2224006SR and
ideal gearbox of ratio 12 : 80 serves as an actuators.

The coefficient of overall equal viscous friction Be is
identified by practical experiment, based on steady-state
current for selected motor input voltage levels within op-
erating range. The linear transfer function for the approx-
imation of DC motor with equivalent load (19) used in PI
controller synthesis is

Fωi/ui
(s) =

21.23

(2.3216× 10−5s+ 1)(0.1394s+ 1)
(36)

while poles, controller gains and used controller sample
rates for internal control loops are summed in Tab. 2.
The sample rate ∆tINN used for neural model training
is also used as neural controller sample rate. For the
navigation controller, that acts on different sample rate
∆tnav = 0.01 s, the controller gains are chosen in respect
to maximal expected position errors as

kρ = 2 , kα = 5 , kβ = −1 (37)

while their values satisfy conditions in (35).
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Table 1. Mobile robot parameters used in simulation

symbol description value unit

r wheel radius 0.025 m
b half-distance between wheels 0.035 m
d CoG X axis offset 0.005 m
M overall robot mass 0.5 kg

Ic overall robot moment of inertia 0.0005 kg.m2

Table 2. Controller settings used in simulation

symbol description value unit

p1, p2 poles used in PI synthesis −15± 15j -

r0 PI proportional gain 0.1598 s

r
−1 PI integral gain 2.9529 s

∆tPI PI controller sample 0.002 s

∆tINN INN controller sample 0.005 s

Table 3. Motor and controller limits used in simulation

symbol description value unit

Ulimit DC motor voltage 0− 4 V

Ilimit DC motor current ±1 A
vref limit reference linear velocity ±1 m.s−1

ωref limit reference angular velocity ±3 rad.s−1

In the case of DC motor models, internal velocity con-

trollers and outputs of navigation controller, the consid-

ered limits are summed in Tab. 3.

To get a better illustration of used internal velocity

tracking control loops properties, the navigation control

task is the robot motion along a 1.5 m line segment,

that origins in point [ 0 0 ]. The reference posture at

time t = 0 moves along line by 0.5m.s−1 constant speed

with π
4

heading angle and after 3 seconds the reference
posture stops, maintaining its heading direction. Both

mobile robots, with different internal loops at t = 0

begins in the same posture [ 0.5 0 π ] and their motion

during a simulation experiment is depicted in Fig. 8.
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Fig. 8. Navigation control to line motion with stop

The motion of robots due navigation control can be

divide into three phases – initial closing in phase, line

following phase with a constant error ρ and slowing down

to final position. Reference velocities vref tracking in case

of PI controllers based internal loop features a overshoot

followed by undershoot, caused by the nature of selected

complex conjugate poles p1, p2 and limits of vref , the real

velocities tracking is shown in Fig. 9.
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Fig. 9. Internal loop velocities tracking – PI controllers

On the contrary, in the case of internal control loop

based on inverse neural controllers, the tracking of refer-

ence linear velocity vref is almost ideal, however there are

oscillations around reference angular velocity ωref from

the start, Fig. 10.
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Fig. 10. Internal loop velocities tracking - INN controllers

The minimization of posture error with the same nav-

igation controller is better in case of inverse neural con-

trollers used in internal velocity control loop in compari-

son to PI controllers, the convergence of polar errors for

both mobile robots is illustrated in Fig. 11.
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In the terms of DC motor coil currents, the changes
are smoother in case of classical PI controllers, the pro-
duced torques dependent on coil currents are in case of
inverse neural controllers oscillating within limited range
when there is a reference velocity change vref that have
a negative impact the control quality, the comparison of
wheel motor currents for both internal velocity control
loops is shown in Fig. 12.

6 Conclusions

As the simulation experiment in this article demon-
strated, the neural models can be successfully trained as
an inverse dynamics models and used as controllers in mo-
bile robot internal velocity tracking control loop. The lin-
ear reference velocity tracking is in case of inverse neural
controllers almost ideal, similar performance is difficult
to achieve using simpler PI controllers. In order to train
neural networks used as neural controllers, the analytical
model of mobile robot is not necessary when the real mo-
bile robot operating limits are known. The independently

trained inverse neural model controllers can incorporate
uneven load acting on particular actuators. The PI con-
trollers offer smoother motor coil currents for smooth ref-
erence velocities changes in comparison to inverse neural
controllers. In addition, the PI controller require only one
previous sample of wheel angular velocity error, while the
inverse neural controller used three past samples of wheel
angular velocities. For the navigation control task, where
the reference velocities are not constant, it is better to use
PI controllers in internal velocity tracking control loops.
On the contrary, in case of constant reference velocities
the inverse neural controller may have a better perfor-
mance.
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