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Foreword

Dear Colleagues,

SCYR (Scientific Conference of Young Researchers) is a scientific event focused on exchange of
information among young researchers from Faculty of Electrical Engineering and Informatics
at the Technical University of Košice – series of annual events that was founded in 2000. Since
2000, the conference has been hosted by FEEI TUKE with rising technical level and unique
multicultural atmosphere. The 22nd Scientific Conference of Young Researchers (SCYR 2022)
was held on April 8, 2022. Due to COVID-19 pandemics, the conference was held online. The
mission of the conference, to provide a forum for dissemination of information and scientific
results relating to research and development activities at the Faculty of Electrical Engineering
and Informatics, has been achieved. Approx. 70 participants, mostly by doctoral categories,
were active in the conference.

Faculty of Electrical Engineering and Informatics has a long tradition of students participating
in skilled labor where they have to apply their theoretical knowledge. SCYR is an opportunity
for doctoral and graduating students to train their scientific knowledge exchange. Nevertheless,
the original goal is still to represent a forum for the exchange of information between young
scientists from academic communities on topics related to their experimental and theoretical
works in the very wide spread field of a wide spectrum of scientific disciplines like informatics
sciences and computer networks, cybernetics and intelligent systems, electrical and electric
power engineering and electronics.

Traditionally, contributions can be divided in 2 categories:

• Electrical & Electronics Engineering

• Computer Science

with approx. 70 technical papers dealing with research results obtained mainly in the University
environment. This day was filled with a lot of interesting scientific discussions among the
junior researchers and graduate students, and the representatives of the Faculty of Electrical
Engineering and Informatics. This Scientific Network included various research problems
and education, communication between young scientists and students, between students and
professors. Conference was also a platform for student exchange and a potential starting point
for scientific cooperation. The results presented in papers demonstrated that the investigations
being conducted by young scientists are making a valuable contribution to the fulfillment of the
tasks set for science and technology at the Faculty of Electrical Engineering and Informatics at
the Technical University of Košice.

We want to thank all participants for contributing to these proceedings with their high quality
manuscripts. We hope that conference constitutes a platform for a continual dialogue among
young scientists.



It is our pleasure and honor to express our gratitude to our sponsors and to all friends, colleagues
and committee members who contributed with their ideas, discussions, and sedulous hard work
to the success of this event. We also want to thank our session chairs for their cooperation and
dedication throughout the entire conference.

Finally, we want to thank all the attendees of the conference for fruitful discussions and a
pleasant stay in our event.

Liberios VOKOROKOS
Dean of FEEI TUKE

April 8, 2022, Košice
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The Survey of Nonlinear Dynamical System
Identification Methods

1Tomáš TKÁČIK (1st year),

Supervisor: 2Ján JADLOVSKÝ

1,2Dept. of Cybernetics and Artificial Intelligence, FEEI TU of Košice, Slovak Republic

1tomas.tkacik@tuke.sk, 2jan.jadlovsky@tuke.sk

AbstractÐThis survey provides an overview of the basic con-
cepts, methods, and algorithms associated with the identification
of nonlinear dynamical systems. It compares approaches of
analytical and experimental identification in the context of white-
box, grey-box, and black-box model structures. At the same
time, it captures chronologically the system identification process
from analytical identification to the validation of the obtained
mathematical model. The main goal of my dissertation will be
to create program modules for the identification of nonlinear
dynamical systems.

KeywordsÐMathematical modeling, Nonlinear optimization,
Parameter estimation, System identification

I. INTRODUCTION

The goal of scientific research is to understand the world
around us and to formally describe it using a generalized
model [1]. Therefore, the purpose of the model is not nec-
essarily to capture every detail of an object, but only the key
aspects. In control engineering, the intention is to create a
description of a dynamical system in the form of a mathe-
matical model. This survey provides an overview of methods,
structures, and algorithms associated with the identification of
nonlinear dynamical systems. The individual sections are ar-
ranged according to the general system identification method-
ology. It starts with Section II, which describes the methods
of analytical identification. Section III provides an overview
of experimental identification methods, typical mathematical
model structures, algorithms for parameter estimation, and
the model validation procedure. The identification of the real
(physical) system is dealt with in the final Section IV.

Presented methods, structures, and algorithms will be used
in my dissertation thesis, which aims to develop and verify
program modules to identify nonlinear dynamical systems.
These program modules will be experimentally verified on
laboratory plants with various dynamics available within the
laboratories of the Center of Modern Control Techniques and
Industrial Informatics (CMCT&II).

II. MATHEMATICAL MODELING OF NONLINEAR

DYNAMICAL SYSTEMS

In our case, the subject of mathematical modeling is dy-

namical systems. A dynamical system is a real object that
converts its inputs u into outputs y. The output y of the system
is functionally dependent on both the inputs u and the internal
states x of the system. Thus, a dynamical system defines the
evolution of system states x with respect to an independent
variable (usually time t).

A model is an abstraction of a real system that describes the
relationships between inputs u and outputs y of a system. The
most common system representation is a mathematical model

with input-output relationships expressed using mathematical
functions. In addition, other forms of model representation
exist, such as tables or graphs.

Systems can be classified into several groups based on
their properties [2]. Based on the system variable types, the
following classification applies:

• Continuous: The state values x change continuously
over time t ∈ R and the system is described by dif-
ferential equations.

• Discrete: The state values x change at discrete time
intervals k ∈ Z and the system is described by a
difference equation.

• Hybrid: Combines multiple continuous and/or discrete
system dynamics that changes abruptly based on discrete
events.

Systems can also be categorized according to mathematical
operations that describe their input-output properties:

• Linear: Dependencies within the system can be described
using linear functions, or their linear combination.

• Nonlinear: The system description consists of nonlinear
functions or a nonlinear combination of functions. Real
systems exhibit nonlinear behavior and thus we will
solely focus on them.

Based on properties of model parameters:

• Time-invariant: Parameter values are fixed or their
changes are insignificant.

• Time-variant: Parameter values evolve over time or
change based on the system states.

Mathematical modeling is a set of techniques and methods
with the aim to create a mathematical model of a system. The
general form of the mathematical model in the state-space
representation is given in (1), where f and g are arbitrary
mathematical functions.

ẋ(t) = f (x(t),u(t))

y(t) = g (x(t),u(t))
(1)

The aim of mathematical modeling is to identify these two
functions (f a g) using physics laws. As the system can be
quite complex, it is better to split it into simpler components.
These can be modeled separately and subsequently connected
together to obtain the overall model [3]. Standard techniques
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such as impedance modeling, balance equations, or Lagrange
equations can also be used. The resultant model structure is the
so-called white-box model. The advantage of this approach is
that the obtained model is parametric and the parameters have
a physical interpretation. The problem arises when parameter
values could not be directly measured or read from datasheets.
Another disadvantage is the fact that many physical laws and
equations are based on the assumptions of an ideal environ-
ment. These approximations may not be accurate enough in
every application. Stated shortcomings of the white-box model
can be mitigated by performing appropriate experiments on a
real system and their subsequent analysis. Such an approach
is called experimental identification.

III. METHODS OF NONLINEAR SYSTEM IDENTIFICATION

System identification is an iterative process that aims to
obtain a mathematical model of the system from experimental
data. More precisely from the measurable inputs u and outputs
y of the observed system. The identification process can be
divided into several steps [4] that are repeated when necessary:

• Experiment design: An initial step in which it is neces-
sary to apply all a priori knowledge about the observed
system to design an experiment, as improper design may
lead to the destruction of the real system. In addition
to the experiment design, this point also includes the
collection of data from the system, where the set of avail-
able sensors, the method of data recording, the sampling
period Ts, etc. must be taken into account. It is important
to note that even though the system is continuous, the
recorded data is in discrete form. This fact plays an
important role in continuous model identification.

• Structure selection: The mathematical model can have
different shapes and sizes, and the individual parame-
ters could also have different physical interpretations in
various structures. The model structure and consequently
the number of parameters is closely tied to the model
complexity. More complex models usually approximate
the real system better but are associated with higher com-
putational cost and more complex parameter estimation
algorithms.

• Parameter estimation: This is a step in which the
selected model structure adapts to the measured data by
changing the parameter values. Parameter estimation is
closely linked to statistical and optimization methods [5].

• Model validation: The last step of system identification
is to verify that the identified mathematical model meets
its expectations. The purposes of the mathematical mod-
els are diverse (digital twin, design of control laws, etc.)
and therefore it is not possible to rely solely on qualitative
or quantitative evaluation.

According to the selected model structure, the identified
models can be divided into two main categories: grey-box
and black-box. In the case of grey-box models, the model’s
structure is predetermined and only the parameters are iden-
tified. On the contrary, in the case of the black-box model
both parameters and structure are identified simultaneously. In
both cases, the approximation model of the system is modified
according to the output prediction error e(k), (2).

e(k) = y(k)− ŷ(k) (2)

Fig. 1. General schema of system identification loop driven by output
prediction error [6].

where: e(k) - output prediction error
y(k) - output of real system
ŷ(k) - output of approximation model

With the addition of a proper optimization algorithm, the
identification structure in Fig. 1 can be used for both the online
and the offline identification tasks.

A. Grey-box System Identification

Grey-box model system identification methods can be fur-
ther subdivided according to whether they lean more towards
white-box or black-box models. The resulting division, named
by the author of [1], is called a model’s palette of grey shades:

• Off-white models are derived from white-box models
and the subject of identification is the parameter vector
θ. This method can be challenging especially if the
mathematical model (1) includes complicated functions.

• Smoke-grey models seek to effectively eliminate non-
linear properties of real systems and thus enabling the
system to be identified in a linear structure. For this,
nonlinear transformations of the measured data are used.
These transformations could be based on the physical na-
ture of the system. The described procedure is sometimes
referred to as the feedback linearization method [7].

• Steel-grey models are based on the idea that nonlinear
systems can be approximated by linear ones within the
close vicinity of the operation area. By combining several
linear models, it is possible to obtain one composite
model that describes the dynamics of the nonlinear sys-
tem. By modification of the composite model formula-
tion, it is possible to obtain a linear time-variant model.

• Slate-grey models are the last stage before the black-box
models. Block-oriented models are a good example of this
category, where the structure of the system is composed
of functional blocks. Two types of blocks are used: linear
dynamical systems and static nonlinear transformations.
The exact choice of suitable nonlinear transformations
can also have a physical basis.

Methods based on system identification in the form of a grey-
box model require designing the structure of the model. This
is laborious from the user’s perspective as it requires a lot of
experimentation and practical experience.

B. Black-box System Identification

The use of black-box models makes it possible to iden-
tify dynamical systems without the need to define the exact
structure. The structure is created automatically during the
identification process using an optimization algorithm [4].
Therefore, these methods are being referred to as data-driven

SCYR 2022 – 22nd Scientific Conference of Young Researchers – FEEI TU of Košice
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methods. In (3) the general mathematical form of the model
is given. The function f represents a model consisting of both
the parameters and the structure of the identified system.

ŷ(k + 1) = f̂
(

y(k),y(k − 1), ...,y(k − n),

u(k),u(k − 1), ...,u(k −m)
) (3)

This notation is used because the internal states and the
parameters have no physical significance. The black-box math-
ematical model is usually discrete, as it was created based on
experimental data obtained at discrete time intervals.

In terms of nonlinear identification in the form of a black-
box model, neural networks are dominant category of ma-
chine learning (ML) methods. This choice is motivated by
the fact that neural networks are considered a universal ap-
proximator of any mathematical function. Ignoring the random
noise present in the real systems, this property is a sufficient
precondition for building a system model. The most used
black-box model structures are [4]:

• Multilayer Perceptron combined with the backpropaga-
tion optimization algorithm is one of the simplest neural
network applications. In the system identification context,
it provides satisfactory results, while drawbacks are asso-
ciated mainly with parameter convergence, computational
complexity, and the local minimum problem [8].

• Radial Basis Function Neural Network is a special
case of a neural network with a single hidden layer that
uses the Gaussian function as an activation function. The
learning is split in two phases: first, the parameters of the
Gaussian functions are estimated; second, the synaptic
weights are estimated. The idea behind the use of the
Gaussian function is to divide the nonlinear workspace
into smaller areas [9] that can be described linearly.

• Functional Link Network uses hardcoded nonlinear
input transformations to linearize the workspace.

• Time Delay Network has an input layer extended by
historical inputs u and outputs y of the system. This
makes it possible to better represent the current state of
the system, which subsequently helps to improve predic-
tion accuracy. Time Delay Network is a key concept of
dynamical system identification.

• Recurrent Neural Network contains recurrent connec-
tions that allow the neural network to maintain the
previous state of the system [10] similar to the Time
Delay Network. The system state is maintained internally
so there is no need to modify the input layer. An
improvement to recurrent neural networks is the Long
Short-Term Memory (LSTM) model, which allows longer
retention of system status [11]. Recurrent networks are
often associated with the stability problem.

• Wavelet Neural Network is an architectural design in
which the activation functions of the first hidden layer are
replaced by a wavelet transform. This allows for better
analysis of signal properties [12] and consequently partial
elimination of nonlinear properties.

• Temporal Convolutional Network is one of many ap-
plications of a relatively new machine learning paradigm
called Deep Learning. Thanks to the deep and complex
structures, it combines the advantages of the above ap-
proaches. The main advantage of deep learning is the
automatic feature extraction from the data that makes it
a very flexible structure for dynamical system identifica-

tion. Authors in [13] compared this approach with Multi-
layer Perceptron and LSTM structures and experimentally
proved its potential in system identification.

In addition to the mentioned structures of neural networks,
it is possible to identify systems using other ML methods
or their combinations [14]. Popular are neuro-fuzzy methods,
genetic algorithms, Swarm Intelligence, etc. Although black-
box models provide high flexibility in the task of system
identification, their structure is often too complicated to be
properly analyzed using classical methods of systems analysis.

C. Parameter estimation algorithms

Up until now, this section was focused on methods and
structures of system identification. The remaining unanswered
question is how to determine the values of the mathematical
model’s parameter vector θ. Values estimation can be formu-
lated as an optimization task, that is formally written in (4).

θ̂ = argmin
θ

N
∑

i=1

eT (i,θ)e(i,θ) (4)

where: θ̂ - estimated parameter vector
N - number of samples

The stated task can be solved using various optimization
algorithms. To make this section cleaner, we are going to list
only a few of the most prevalent optimization algorithms used
for dynamical system identification:

• Gauss-Newton least squares is a standard algorithm
for the nonlinear estimation of function parameters. It
is based on the assumption that the error function is a
quadratic function.

• Steepest descent algorithm is known for estimating
neural network parameters and is based on a function’s
gradient calculation. The values of the parameter vector
θ are literally shifted in the downhill direction of the
gradient in each iteration.

• Levenberg-Marquardt least squares is an algorithm
combining principles of both the Gauss-Newton and the
Steepest descent algorithms. In the vicinity of optimal
parameter values, it behaves similarly to Gauss-Newton
and at greater distances as Steepest descent [15].

• Evolutionary computing is inspired by optimization ob-
served from nature. The main advantage of this algorithm
is the lower susceptibility to stuck in the local optimum,
as the searched space is relatively widely covered.

The choice of the optimization algorithm is closely linked to
the choice of the model structure. A combination of different
algorithms or their modification can make the optimization
task faster and more reliable.

Apart from the selection of optimization algorithms, the
initialization of the parameter vector θ is also important.
In the case of grey-box models, where the parameters have
their physical significance, it is possible to estimate values
of unknown parameters by hand. In the case of black-box
models, random initialization is used, as there is no connection
between parameter values and the real world.

D. Model validation

The last part of the systems identification process is the
validation of the identified mathematical model. The mathe-
matical model can be validated in an open-loop or in a closed-
loop. In both cases, the output of the real system is compared
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Fig. 2. Component assembly of the Aerodynamic Ball Levitation Laboratory
Plant [6]. See: http://kyb.fei.tuke.sk/laboratoria/modely/al.php

with the output of the mathematical model. Historically, model
validation has often been overshadowed by the identification
methods [16]. Therefore, subjective evaluation methods like by
eye inspection were mainly used to compare the outputs. From
the model validity evaluation standpoint, this is still a common
method [4]. The drawback of this method is sole reliance on
the expert’s judgment. For this reason, it is more appropriate
to rely on quantitative evaluation methods instead. A fit
ratio is usually used for this task. Apart from the possibility
to generate negative values, it is also sensitive to the signal
amplitude in the case of non-normalized values. The authors
in [17] presented a modification of this method that internally
uses normalization as the solution for these problems. Lastly,
part of the model validation is to verify whether the model
meets the author’s expectations, e.g. whether it allows the
design of suitable control laws.

As part of my dissertation thesis, I will use the identified
mathematical model for control law design. The validation of
the model will therefore be performed mainly in the closed-
loop control structure.

IV. IDENTIFICATION OF AERODYNAMIC BALL LEVITATION

LABORATORY PLANT

Methods and techniques presented in this survey were used
in our article [6] focused on the construction, mathematical
modeling, experimental identification, and control of the phys-
ical dynamical system of aerodynamic levitation shown in
Fig. 2. As part of analytical identification, a mathematical
model was derived in the form of a system of nonlinear
differential equations. Since not all parameters of the model
were directly measurable, it was necessary to proceed to exper-
imental identification. The resulting structure of the obtained
model was a grey-box model. This model has been used to
design control laws that were later verified in the simulation
environment. Finally, control laws were applied to the real
system and the outputs were compared with the simulation.
The obtained results were evaluated both qualitatively and
quantitatively. In conclusion, the obtained mathematical model
was able to appropriately approximate key parts of the real
system’s dynamics. This plant will be further used in research
activities of CMCT&II.

V. CONCLUSION

The presented survey provides an overview of key meth-
ods, structures, and algorithms used in the identification of

nonlinear dynamical systems. It also compares approaches
of analytical and experimental identification. I will use the
presented knowledge in my dissertation thesis in the design
of program modules to identify nonlinear dynamical systems.
These program modules will be experimentally verified on
models of physical systems at CMCT&II. In addition to our
research group, the authors will explore the possibility of
applying these program modules and methodology to solve
modeling and identification tasks of hybrid systems in the
ALICE Experiment at CERN that both authors are associated
members of.
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