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Abstract—The purpose of this paper is to examine the state-of-

the-art in the analysis and control of nonlinear underactuated 

mechanical systems. Typical representatives of such systems are 

presented together with theoretical fundamentals. Application of 

optimal control techniques and hybrid systems theory to 

underactuated systems is described. Future research challenges 

are suggested and a list of essential references is included. 
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I. INTRODUCTION

Underactuated systems represent a significant group of 

mechanical systems which range from simple planar robots or  

inverted pendulum systems to advanced higher-order systems 

with applications in robotics and air/sea transport [1]. In 

general, these systems are inherently nonlinear and have fewer 

control inputs than degrees of freedom [2], which presents a 

significant challenge to modeling and controller design [3]. 

This paper aims to provide a concise survey of the main 

achieved results and applications of underactuated systems 

with frequent references to crucial works in the field. After 

a brief summary of mathematical and physical preliminaries, 

principal examples of underactuated mechanical systems are 

presented. The ability of optimal control techniques to suit the 

properties of underactuated systems is next evaluated, and the 

potential of hybrid systems theory, which describes the 

integration of continuous/discrete dynamics in a dynamical 

system, is briefly examined with regard to modeling and 

control of underactuated systems. 

All the way throughout the paper, open research problems 

are indicated. Most of these explore the theoretical and 

practical aspects of mutual overlaps between the physics of 

underactuated systems, optimal control techniques, and hybrid 

systems theory [1]. 

II. MODELING OF NONLINEAR UNDERACTUATED SYSTEMS 

USING LAGRANGIAN MECHANICS

According to the Lagrangian formulation of classical 

mechanics, every possible configuration of a multi-body 

mechanical system can be described by a vector of generalized 

coordinates ( )t� , which correspond to the degrees of freedom 

(DoFs) of the system. Using the d’Alembert maximum 

principle, Euler-Lagrange equations were derived (one 

equation of motion is specified for every DoF) [1][4]: 
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where ( )L t  is the difference between multi-body system’s 

kinetic and potential energies (each given as a sum of energies 

of individual bodies), ( )D t  stands for the dissipation 

properties and ( )* tQ  is the vector of generalized external 

inputs. The process of mathematical model derivation via (1) 

is naturally transformable into a general algorithm which can 

be implemented using accessible symbolic software packages 

such as MATLAB’s Symbolic Math Toolbox, Maple, and 

Wolfram Mathematica [1]. The mathematical model of a 

general controllable mechanical system derived from (1) is 

given as a following set of second-order differential equations: 

( ) ( ) ( ) ( )( ), , ,t t t t t=� f � � u�� �  (2) 

The often-present assumption that the forward dynamics is 

affine in the direction of the produced torque yields a slightly 

constrained representation of the system: 

( ) ( ) ( )( ) ( ) ( )( ) ( )1 , , , ,t t t t t t t t= +� f � � G � � u�� � �  (3) 

It is often useful to rearrange (3) into the standard (minimal 
ODE – ordinary differential equation) form [5]: 

( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ),t t t t t t t t+ + =M � � N � � � R � V u�� � �  (4) 

where ( )( )tM �  is the inertia matrix, ( ) ( )( ),t tN � ��  describes 

the influence of centrifugal /Coriolis forces, ( )( )tR �  accounts 

for gravity forces and ( )tV  is the system input vector. 

The system given as (3) or (4) is fully actuated in 

configuration ( ) ( )( ), ,t t t� ��  if it is able to command immediate 

acceleration in an arbitrary direction [3]:  

( ) ( )( )( ) ( )( )( ) ( )( ), , dimrank t t t rank t t= =G � � V � ��  (5) 

If the range of directions in which immediate acceleration can 

be commanded is limited, the system is underactuated:  

( ) ( )( )( ) ( )( )( ) ( )( ), , dimrank t t t rank t t= <G � � V � ��  (6) 

Typically, underactuated systems have fewer actuators than 

DoFs [1]. The difference ( )( ) ( )( )( )dim t rank t−� V � specifies the 

degree of underactuation of the system. 
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A. Inverted Pendulum Systems 

Stabilization of a physical pendulum or a system of 

interconnected pendulum links in the upright unstable position 

is a benchmark problem in nonlinear control theory: in recent 

years, several types of stabilizing mechanisms such as cart 

moving on a rail [5], rotary arm [6], vertical oscillating base, 

or gyroscope have been introduced. Inverted pendulum 

systems (IPSs) are therefore regularly employed as typical 

examples of unstable nonlinear underactuated systems in the 

process of verification of linear or nonlinear control strategies 

in corresponding control structures [1][5][6]. Direct practical 

applications include walking robots, launching rockets, 

earthquake-struck buildings and two-wheel vehicles such as 

the Segway PT [1]. Principles of modeling and control of IPSs 

can further be considered as the basic starting point for the 

research of advanced underactuated systems such as mobile 

robots and manipulators [3], as well as aircraft / watercraft 

vehicles [2]. 

Fig. 1 Scheme and nomenclature: a) Generalized classical inverted pendulum 

system b) Generalized rotary inverted pendulum system 

During our research, we focused on the mutual analogy 

among mathematical models of IPSs with various number of 

pendulum links. Consequently, we introduced the concept of a 

generalized (n-link) inverted pendulum system with n+1 DoFs 

and a single actuator, which allows to treat an arbitrary system 

of interconnected inverted pendula as a particular instance of 

the system of n pendula attached to a given stabilizing base 

(Fig. 1). A general procedure which determines the Euler-

Lagrange equations of motion for a user-specified instance of 

a generalized classical and rotary IPS was developed and  

implemented via Symbolic Math Toolbox [7]. 

B. Artificial Underactuated Systems 

Acrobot, Pendubot and the inertia wheel pendulum are all 

examples of underactuated systems with two degrees of 

freedom and a single actuator [2][8] which were introduced 

artificially to create complex low-order nonlinear dynamics 

and gain insight into control of high-order underactuated 

systems. Graphical representation of the Acrobot and the 

Pendubot is similar – both systems are depicted as two-link 

planar robots with revolute joints and share the same matrix of 

inertia. In the case of Acrobot, the actuator is placed at the 

elbow, while the Pendubot is actuated at the shoulder (Fig. 2). 

Fig. 2 Scheme and nomenclature: a) Acrobot b) Pendubot 

 The inertia wheel pendulum is composed of a physical 

pendulum with a rotating uniform inertia wheel at the end of 

the pendulum rod which is not directly actuated: in order to 

stabilize the pendulum in the upright equilibrium, the system 

has to be controlled via the rotating wheel. 

C. Mobile and Manipulator Robotic Systems 

Stabilization and tracking problems in mobile robotics
generally involve underactuated mechanical systems [2][8]. If 

a robot with n inner connections and  n actuators is not 

attached to the ground and instead performs walking, 

brachiating, gymnastic, swimming or flying motion [2], the 

number of its DoFs increases by the six DoFs which define its 

position and spatial orientation. Every additional control 

surface (i.e. a moveable platform) adds another actuator and 

a DoF to the system. Robot manipulators are often 

underactuated by construction, and a fully actuated 

manipulator becomes underactuated whenever the 

manipulated body provides the system with additional DoFs. 

Principles of control for underactuated systems can also be 

employed to improve control of fully actuated systems either 

by increasing the effectivity of the employed actuators or by 

decreasing the design complexity [3]. After all, if the standard 

initial assumption of rigid robotic arms is omitted, we can 

claim that every robotic system is underactuated. 

D. Aircraft & Watercraft Systems 

Two significant groups of underactuated systems include 

aircraft (helicopters, airplanes, spaceships, satellites) and 

watercraft systems (ships, boats, submarines). Stabilization of 

the system in the direction of individual DoFs in the water/air 

environment, trajectory tracking and planning are specified as 

the principal analyzed problems. Underactuation is generally 

implied by the design and construction of a particular vehicle 

(Fig. 3). The PVTOL (planar vertical take-off and landing) 

airplane system is an underactuated system with three DoFs 

and two actuators which is often employed as a simplified 

planar model of the takeoff and landing of a helicopter [8]. 

The helicopter/airplane system is standardly described by six 

DoFs – position (x, y, z) and rotation angles along the three 

axes (pitch – lateral, roll – longitudinal, yaw – vertical 

rotation) and four control inputs – three control moments in 

the body frame and the main rotor thrust [2]. Ocean vessels 

are equipped with propellers and rudders which enable control 

in two directions only (surge – longitudinal, heave – vertical 

axis) without any direct control in the direction of lateral 

motion (sway) [9]. The degree of underactuation can also 

increase in the case of actuator failure, or if the number of 

motors is intentionally reduced to decrease the load mass 

onboard the aircraft or watercraft. 

Fig. 3 Scheme and degrees of freedom related to principal axes: 

a) Airplane b) Ship 
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Living systems are often underactuated in the interaction 

with their surroundings. Although the human body contains 

more actuators (muscles) than DoFs (joints), it can be easily 

proven that our body is underactuated despite the presence of 

fully actuated joints: if we jump into air, no combination of 

control inputs from muscles is able to counter the influence of 

gravity and aerodynamic forces and change the trajectory of 

our center of gravity [3]. Similar considerations apply to the 

other living creatures. A flying bird, a swimming fish and a 

walking human are all examples of mechanical systems whose 

locomotion is due to changes in their physical shape, leading 

to indirect position actuation. As it is shown in [10], by 

studying various types of animal locomotion and the way they 

overcome their own underactuated dynamics, we can get 

significant inspiration for design of underactuated vehicles. 

III. OPTIMAL CONTROL OF NONLINEAR UNDERACTUATED 

SYSTEMS 

Fully actuated systems possess a number of strong structural 

properties which facilitate design of optimal/robust/ adaptive 

controllers, e.g. feedback linearizability, passivity and linear 

parametrizability. These are usually lost in underactuated 

systems, while at the same time undesirable properties (higher 

relative degree, nonminimum phase behavior) emerge [2]. 

Control of underactuated systems subsequently becomes more 

difficult, with fewer general results available. 

It has been shown that optimal control techniques yield 

reliable, consistent results for underactuated systems. The goal 

of optimal control design for a linear, time-invariant dynamic 

system is to determine such feedback control so that a given 

criterion of optimality is achieved [11]. In case the considered 

linear system is actually a linear approximation of a nonlinear 

system around a given equilibrium, then the optimal 

techniques for linear systems yield an approximate, locally 

near-optimal stabilizing solution with guaranteed closed-loop 

stability and robustness. In [1][12], we solved the problem of 

IPSs stabilization in the unstable position via optimal control 

algorithms based on quadratic functional minimization, using 

continuous-time and discrete-time linearized state-space 

models of IPSs. We also introduced additional control 

structures which ensure that the cart/arm position reaches 

the reference value (by means of feedforward gain), and the 

permanent steady-state error is eliminated (by implemented 

integral control). 

Model predictive control (MPC) is a discrete-time optimal 

control technique in which the control action for each time 

step is computed by solving an on-line optimization problem 

in finite time (receding horizon control) while at the same 

time considering input/state constraints [13]. MPC is currently 

the only modern control technique with significant impact 

on industrial process control: compared to the 1980s, when 

MPC technology first became popular in petrochemical 

industry, commercial MPC implementations can now be found 

in chemical and food processing, automotive and aerospace 

applications [15]. However, application of the MPC algorithm 

for most nonlinear underactuated systems still presents 

a challenge in terms of disturbance/steady-state error 

elimination. To solve problems arising from the structure of an 

underactuated system, suitable adjustment of the MPC 

algorithm [13][14] is required. 

IV. HYBRID SYSTEMS THEORY IN MODELING AND CONTROL 

OF UNDERACTUATED SYSTEMS

To provide a convenient framework for modeling and 

control of systems characterized by an interaction between 

continuous (time-driven) and discrete (event-driven) 

dynamics, hybrid systems theory was developed [16]. As a 

result, various engineering problems which were once 

considered a case of a particular implementation can now be 

researched systematically as part of a complex theory. 

A. Modeling of Underactuated Hybrid Systems 

Hybrid models are often useful if we have to consider 

discontinuous development of the mechanical system 

dynamics, i.e. a robotic arm whose continuous motion is 

interrupted by collisions or strikes to the surface, or if the arm 

dynamics is subject to state jumps caused by the arm shooting 

out objects. In [17], a hybrid model of such an underactuated 

robot is defined as a modification of the standard minimal 

form (which includes an operator describing the jumps in the 

state vector), and employed in a trajectory planning algorithm. 

Out of the available mathematical formalisms (modeling 

frameworks) of hybrid systems, PWA and MLD forms are 

often employed: the PWA form interconnects the linear state-

space representation and discrete automata, dividing the 

input/state space into regions defined by polyhedra, and the 

MLD form is composed of a system of linear difference 

equations which can assume real and binary values and a set 

of linear inequalities to describe the constraints [18]. 

B. Control of Underactuated Hybrid Systems 

Optimal control theory is the principal approach to hybrid 

systems control, and the complexity of an optimal control 

problem decreases if the system is expressed in discrete-time, 

since its main source in a hybrid system is the number of  

possible switching scenarios. Optimal control problems can be 

solved for hybrid systems in the discrete-time state-space form 

using either PWA or MLD models, which was first outlined by 

Sontag in [19]. It is next shown by Borrelli [18] that the 

solution of the optimal control problem in finite time is a time-

variant piecewise-affine feedback control law, defined over 

non-convex regions. Hybrid model predictive control, which 

has recently attracted much attention, is suitable for systems 

defined by switched linear dynamics which are subject to 

linear/logical constraints on state/input variables [20]. 

Application of hybrid optimal/predictive control algorithms 

on underactuated systems has already been covered by 

multiple authors, although no consistent approach has yet been 

developed. In a survey paper, Buse et al. [21] demonstrate the 

application of hybrid optimal control techniques in control of 

an underactuated robot arm. Yin & Hosoe [22] employ hybrid 

predictive control to plan the trajectory of a walking robot 

expressed in MLD form, and Rodrigues & How [23] develop 

an algorithm to automate the transformation of IPSs into the 

PWA representation to enable subsequent hybrid control. 

The advancement of hybrid systems theory is supported by 

a wide range of available software tools which enable 

symbolic/numeric computations and simulations in accordance 

with theoretical results. Most of these have been developed by 

research groups led by Prof. Morari of  ETH Zürich and Prof. 
Bemporad of ETH Zürich, later University of Siena [18][20], 

and include tools which simplify the process of formulation 
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and analysis of a hybrid model (HYSDEL modeling language), 

enable experimental identification of hybrid models (Hybrid 
Identification Toolbox (HIT)), and provide functions for 

hybrid optimal/predictive control algorithm design as well as 

closed-loop simulation (Hybrid Toolbox (HT) [24], and 

Multiparametric Toolbox (MPT) [25]).  

From a different viewpoint, Liberzon [26] presents 

examples of control problems of underactuated systems where 

it is necessary or useful to employ switching control 

structures. If the desired trajectory of the underactuated system 

consists of multiple pieces of significantly different parts (e.g. 

aircraft maneuvers) or if the state space contains obstacles, we 

might need to choose different controllers at different stages of 

the problem and implement switching between them. Also, 

switching control is often the only feasible way to control 

a nonholonomic system, since there is no continuous control 

which could stabilize such systems on a given time interval. 

V. CONCLUSION

This paper presents a compact summary of results which 

have so far been achieved in modeling and optimal control of 

nonlinear mechanical underactuated systems using classical 

and hybrid approaches. Great practical importance of 

underactuated systems in mobile robotics, aviation and ship 

transport has sparked much interest from physicists and 

control theorists alike. The principal aim of currently 

conducted research is to overcome the difficulty of control 

algorithm design caused by certain disadvantageous physical 

properties of underactuated systems. 

After a brief survey on fundamental principles of mecha-

nical system modeling based on Lagrangian mechanics, an 

overview of principal categories of underactuated systems was 

presented. For each category, the reason for underactuation 

was specified together with control objectives addressed in 

referenced works. Optimal control was confirmed as a reliable 

control technique for underactuated systems; it was shown that 

adjustments to predictive algorithms are required. Application 

areas of hybrid systems theory were discovered to include 

hybrid models for underactuated systems with logical parts, as 

well as hybrid optimal/predictive control algorithms and 

switching control structures. Numerous problems with future 

research potential were emphasized in the paper. 

The findings presented in this paper are elaborated in the 

referenced thesis for dissertation examination which describes 

the proposed integration of theories of underactuated systems, 

optimal control, and hybrid systems. As a meaningful 

contribution to modeling/control education, nonlinear 

underactuated systems are being integrated into the research 

and teaching activities of the Center of Modern Control 

Techniques and Industrial Informatics at the DCAI-FEEI TU. 
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