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Abstract —The aim of this paper is to provide an original approach to the analysis and control of 

inverted pendula systems which employs custom blocks and demo schemes of a Simulink block 
library designed by the authors. The capabilities of the library are enhanced by software tools which 
provide a user-friendly graphical interface to modeling and linearization. The tools are next shown 
in action as classical double and rotary single pendulum systems are analyzed, modeled and 
successfully stabilized in the unstable inverted position of the pendula. 
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I. INTRODUCTION 

Inverted pendula systems represent a significant group of mechanical systems used in control 
education with a number of practical applications. It is evident that the stabilization of a walking 
human or robot, a launching missile or the vertical movement of a shoulder or arm can all be 
modeled by some kind of an inverted pendula system. The diversity of modeled systems is 
reflected in the variety of available inverted pendula models. These may differ by: 

• the type of actuating mechanism – the system base is moving either in a single axis 
(classical pendulum system) or in a plane (rotary pendulum system) 

• the number of pendulum links attached to the mechanism – single and double pendulum 
systems are common control plants; triple and quadruple pendulum are rare but 
controllable 

• the distribution of mass within the pendulum rod – the pendulum links are either 
homogenous rods with the mass concentrated in the center of gravity; or the rod is 
considered massless and the mass is concentrated in the load at its end. 

    

Fig. 1 a) Classical double inverted pendulum system - scheme 
1 b) Rotary single inverted pendulum system – scheme 

The most standard representative of the family of inverted pendula systems, the classical 
single inverted pendulum system, was thoroughly analyzed in [1][2] together with suitable 
control algorithms and therefore will not be included in this paper. This paper will instead focus 
on the analysis and control of the more challenging systems, i.e.: 
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• double (two-link) classical inverted pendulum system (Fig. 1a) 
• single (one-link) rotary inverted pendulum system (Fig. 1b) 

II.  A LIBRARY OF MODELS 

The nonlinear mechanic system of n inverted pendula is basically a set of n>1 pendulum links 
attached to a stable base which may be moveable in one axis (cart) or in a horizontal plane 
(rotary arm). It is a typical example of an underactuated system since the number of actuators is 
lower than the number of system links: the only input (the force acting upon the cart/ the 
momentum applied on the rotary arm) is used to control the n+1 outputs of the system: cart 

position [ ]m or arm angle [ ]rad , and pendula angles[ ]rad . 

Since 2009, a thematic Simulink block library Inverted Pendula Modeling and Control 
(IPMaC) has been developed. The purpose of the block library is to provide software support 
for analysis, simulation and control of inverted pendula systems using custom-designed blocks 
and „demo“ simulation schemes which illustrate the way the blocks may be interconnected to 
solve various analysis- and control-related problems. The installation process and sublibrary 
structure of the IPMaC was described in detail in [1]. 

A. Derivation of Motion Equations 

An integral part of the IPMaC, the Inverted Pendula Model Equation Derivator, is a 
MATLAB GUI tool which generates the motion equations for a user-chosen type of inverted 
pendula system. Such automatic approach has a number of advantages: it yields a particularly 
precise approximation of the real system’s dynamics and eliminates any factual or numeric 
errors which could arise during manual mathematical modeling. Fig. 2 shows a preview of the 
Derivator output for the single rotary inverted pendulum system. 

 

Fig. 2 Inverted Pendula Model Equation Derivator GUI tool in use: 
rotary pendulum model derivation 

The core of the Derivator tool is represented by MATLAB functions that use the Symbolic 
Math Toolbox to implement general procedures that derive the motion equations for a classical 
or rotary inverted pendula system. If we represent the system’s outputs as a vector of 
generalized coordinates [2]: 

 ( ) ( ) ( ) ( )( )0 1

T

nt t t tθ θ θ=θ …  (1) 

then the system can be mathematically described by the Euler-Lagrange equations: 
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where ( )L t  (Lagrange function) is defined as the difference between the system’s kinetic and 

potential energy, ( )D t  (Rayleigh, dissipation function) describes the viscous (friction) forces 

and ( )* tQ  is the vector of generalized external forces acting upon the system. The process of 

derivation of the motion equations to describe any kind of inverted pendula system is hence 
transformed into the determination of kinetic, potential and dissipation energies related to the 
base and all pendula. Using well-known physical formulae, general relations that describe the 
energetic balances of the base and i-th pendulum in an inverted pendula system were derived. 
These can be found in [2] for the system of inverted pendula on a cart and derived analogously 
for the rotary pendulum system. The whole derivation process can be tracked in the command 
window (see the preview in [1]). 

Using the Derivator tool, mathematical models of both the classical double and rotary single 
pendulum system were generated. The motion equations were rewritten into the standard 
(minimal ODE – ordinary differential equation) form:  

 ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ),t t t t t t t+ + =M θ θ N θ θ θ P θ Vɺɺ ɺ ɺ  (3) 

which provides the only way to express this kind of system in the nonlinear state-space form of 

 
( ) ( )( )
( ) ( )( )

( ) , ,

( ) , ,

t t u t t

t t u t t

=
=

x f x

y g x

ɺ
 (4) 

by defining the state vector as ( ) ( ) ( )( )Tt t t=x θ θɺ and isolating the second derivative ( )tθɺɺ from  (3). 

B. Selected inverted pendula models – model analysis 

The classical double inverted pendulum system (Fig. 1a) is composed of a pair of rigid rods 
which are interconnected in a joint and one of these is attached to a cart. The mathematical 
model of the system has the form of three rather complex second-order nonlinear differential 
equations which describe the dynamic behavior of the cart and both pendulum links: 
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 (5) 
where 0m  is the cart mass, 1m , 2m  are the pendula masses, 1l , 2l  are the pendula lengths,0δ is 

the friction coefficient of the cart, 1δ , 2δ  are the damping constants in the joints of the pendula, 

2
1 1 1

1

3
J m l= , 2

2 2 2

1

3
J m l=  are the moment of inertia of the pendula with respect to the pivot points 

and ( )F t  is the force induced on the cart.  

The rotary single inverted pendulum system (Fig. 1b) consists of a pendulum rod attached to 
an arm rotating in a horizontal plane. Once again, the mathematical model of the system, as it 
was generated by the Derivator, is composed of two second-order nonlinear differential 
equations which respectively correspond to the rotary arm and the pendulum: 
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where 0m , 1m  stand for the masses of the arm and the pendulum, 0l , 1l  are their respective 

lengths, 0δ , 1δ  are the damping constants in the joints of the arm and pendulum, 2
0 0 0

1

3
J m l=  

and 2
1 1 1

1

3
J m l=  are the moments of inertia of the arm and the pendulum with respect to their 

pivot points and ( )M t  is the input momentum applied on the arm. 

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Simulation time [s]

C
ar

t P
os

iti
on

 [m
]

Cart Position Analysis - Double Inverted Pendulum

 

 

Cart Position

0 2 4 6 8 10 12 14 16 18 20
-350

-300

-250

-200

-150

-100

-50

0

50

Simulation time [s]

P
en

du
lu

m
 A

ng
le

 [d
eg

]
Pendulum Angle (Lower & Upper) Analysis -

Double Inverted Pendulum

 

 

Pendulum Angle (Lower)
Pendulum Angle (Upper)

 

Fig. 3 Classical double inverted pendulum system time behavior – cart position and pendula angles 
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Fig. 4 Rotary single inverted pendulum system time behavior – arm and pendulum angles 

Both models were included in the IPMaC block library in form of atomic Simulink blocks 
with a dynamic mask which supports useful features such as editable parameter constants and 
initial conditions as well as an adjustable number of input and output ports [1]. The obvious 
complexity of model equations is the price paid for a particularly accurate simulation model. To 
determine the behavior of the models in response to an impulse signal, simulation experiments 
were performed, to satisfactory results (Fig. 3, Fig. 4). Long-observed empirical findings about 
pendula behavior are confirmed: each pendulum of the system passes through oscillatory 
transient state until the system reaches the stable equilibrium point with all pendula pointing 
downward. The backward impact of the pendulum/pendula on the base (cart/arm), which 
increases with the weight of the load, is also visible. The models can therefore be considered 
accurate enough to serve as a reliable testbed for control algorithms. 
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III.  CONTROL ALGORITHM BLOCKS 

Controllability properties of inverted pendula systems were verified using both the double 
and rotary inverted pendulum system [3][4][5]. In order to meet the standard control objective 
in pendula systems, i.e. to stabilize all pendulum links in the upright, unstable position, linear 
methods of synthesis were used. As a result, linear approximation of the originally nonlinear 
inverted pendulum systems is required. The process can be considerably sped up with help of 
another GUI tool from the IPMaC: the Inverted Pendula Model Linearizator & Discretizer. In 
case the system type, model parameters and equilibrium point have been provided by the user, 
the tool generates the numeric state-space matrices of a linearized system using the standard 
(Taylor) series expansion around a given equilibrium point (Fig. 5)[3]. The discretized state-
space matrices of the system, necessary for discrete state-space control design, are also returned 
if the sample time constant has been provided. 

 

Fig. 5 Inverted Pendula Model Linearizator & Discretizer GUI tool in use: 
linearized and discretized state-space matrices of the double inverted pendulum system 

All inverted pendula systems included in the IPMaC were modeled in a way which defines 
the “all upright” equilibrium as ( ) T

St = =x x 0 . If ( ) 0Su t u= = , the state-space description of 

the continuous linearized system is given as 

 
( ) ( ) ( )
( ) ( ) ( )
t t u t

y t t du t
= +
= +

x Ax b
Cx

ɺ
,  (7) 

in case A , b , C , d  are the numeric continuous state-space matrices generated by the 
Linearizator & Discretizer tool. 

To provide program support for inverted pendula control, linear state-space algorithms were 
implemented into Simulink and encapsulated into dynamic-masked control blocks. Most 
importantly, the State Space Controller block evaluates the relation 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )f v u uu t u t u t d t t w t d t= + + = − + +vkx k , (8) 

where k is the feedback gain which brings the system’s state vector to the origin of the state 
space [3][4], vk  represents the setpoint gain which needs to be applied if a nonzero required 

value is specified and ( )tdu  is the unmeasured disturbance. To match an additional control 

objective (initial deflection, compensation of disturbance signal, tracking a reference position of 
the cart or a combination of the three), the block’s appearance may be adjusted by optional 
enabling or disabling of the nonzero setpoint input ( )tw and the disturbance input ( )ud t . 

The State Estimator block implements the Luenberger state estimator:  

 ( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆt t u t t t= + + −x Ax b L y Cxɺ  (9) 

where L is the estimator gain matrix and ( )ˆ tx is the estimated state vector ([2][6]). 

The Demo Simulations section of the IPMaC documents several simulation experiments 
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which were performed to prove that both the LQR-designed controller and standard pole-
placement are able to meet the required control objectives for both systems in question. Fig. 6 
and Fig. 7 show the simulation results in case the control objective was to maintain the desired 
cart position/arm angle while keeping the pendulum/pendula upright. Measurement limitations 
were simulated and an estimator block was included in both schemes to provide the controller 
block with a complete state-space vector (see [2] for the structure of control loop) 
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Fig. 6 Classical double inverted pendulum: simulation results for pole-placement control, estimator included 
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Fig. 7 Rotary single inverted pendulum: simulation results for LQR control, estimator included; note that the arm is 
supposed to rotate for exactly a half-circle before returning to its initial position 

IV.  CONCLUSION 

The purpose of this paper was to propose an original conception of solving the task of 
modeling and control of the inverted pendula dynamical systems. Using the custom-designed 
Simulink block library Inverted Pendula Modeling and Control and custom program tools with 
graphical user interface, classical double and rotary single pendulum systems were analyzed and 
modeled. Algorithms of linear state-space control that stabilize the pendula in the inverted 
position were incorporated into the demo simulation archive of the library. 
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