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Abstract —The aim of this paper is to provide an original appoach to the analysis and control of
inverted pendula systems which employs custom bloskand demo schemes of a Simulink block
library designed by the authors. The capabilities ofhe library are enhanced by software tools which
provide a user-friendly graphical interface to moddéing and linearization. The tools are next shown
in action as classical double and rotary single peulum systems are analyzed, modeled and
successfully stabilized in the unstable inverted gition of the pendula.

Keywords — system of inverted pendula, state-space contrdlJATLAB/Simulink block library.

I. INTRODUCTION

Inverted pendula systems represent a significamigof mechanical systems used in control
education with a number of practical applicatidhss evident that the stabilization of a walking
human or robot, a launching missile or the vertimalvement of a shoulder or arm can all be
modeled by some kind of an inverted pendula systEime diversity of modeled systems is
reflected in the variety of available inverted peladmodels. These may differ by:

» the type of actuating mechanismthe system base is moving either in a singls axi
(classical pendulum systgmr in a planerptary pendulum systém

* the number of pendulum links attached to the meshman single and double pendulum
systems are common control plants; triple and quadr pendulum are rare but
controllable

« the distribution of mass within the pendulum redthe pendulum links are either
homogenous rods with the mass concentrated in e¢héesic of gravity; or the rod is
considered massless and the mass is concentratesllvad at its end.

Fig. 1 a) Classical double inverted pendulum systegheme
1 b) Rotary single inverted pendulum system — sehem

The most standard representative of the familynekited pendula systems, the classical
single inverted pendulum system, was thoroughlylyaed in [1][2] together with suitable
control algorithms and therefore will not be inaddldin this paper. This paper will instead focus
on the analysis and control of the more challengiysiems, i.e.:
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» double (two-link) classical inverted pendulum syst{gig. 1a)
 single (one-link) rotary inverted pendulum systétig(1b)

Il. A LIBRARY OF MODELS

The nonlineamechanic system of n inverted pendslbasically a set ai>1 pendulum links
attached to a stable base which may be moveabbménaxis (cart) or in a horizontal plane
(rotary arm). It is a typical example of an undémated system since the number of actuators is
lower than the number of system links: the onlyuinfthe force acting upon the cart/ the
momentum applied on the rotary arm) is used torobtihe n+1 outputs of the system: cart
position [m] or arm angldrad], and pendula anglfsd] .

Since 2009, athematic Simulink block librahyverted Pendula Modeling and Control
(IPMaC) has been developed. The purpose of the blochriibis to provide software support
for analysis, simulation and control of invertechgela systems using custom-designed blocks
and ,demo” simulation schemes which illustrate Wy the blocks may be interconnected to
solve various analysis- and control-related proBleiihe installation process and sublibrary
structure of théPMaC was described in detail in [1].

A. Derivation of Motion Equations

An integral part of thelPMaC, the Inverted Pendula Model Equation Derivatas a
MATLAB GUI tool which generates the motion equasofor a user-chosen type of inverted
pendula system. Such automatic approach has a mwhlaglvantages: it yields a particularly
precise approximation of the real system’s dynanaicd eliminates any factual or numeric
errors which could arise during manual mathematicatleling. Fig. 2 shows a preview of the
Derivator output for the single rotary inverted pendulunmesys

B Inverted Pendula Model Equation Derivator [

Inverted Pendula

Model Equation Derivator

— Inverted pendula system type:

‘ Derive system equations...

Number of pendula
Rotary Single Inverted Pendulum Motion Equations
Parameters

mll - arm mass, m1 - pendulum mass

10 - arm length, 11 - pendulum length

Typeof system——_

{ il deltal - arm damping, deltal - pendulurn damping

single =

JT0 - arm moment of inertia, JT1 - pendulum moment of inertia

classical
fiD - arm angle, 1 - pendulum angle, dfi0 - arm angular velacity, dfi1 - pendulum angular velocity

o rotary

d2fi0* (JT0 + (10*2*m0)/4 + 1042*ml + (1l1°2*ml*sin(fil)~2)/4) +
dfio* ((dfil*ml*sin(2*fil)*11+2)/4 + deltal) +
(dfi1+2#10%11*ml*sin(fil))/2 + (d2£i1%10%11*ml*(2%sin(fil/2)"2 - 1))/2

d2fil* ((m1*11+2)/4 + JT1) + deltal*dfil - (g*ll*ml#*sin(fil))/2 -
(dfio~2*1142*ml*sin(2*fil) /8 - (d2fi0*10*11l*ml*cos(fil))/2

Fig. 2Inverted Pendula Model Equation Derivat@tJI tool in use:
rotary pendulum model derivation

The core of théderivator tool is represented by MATLAB functions that use Symbolic
Math Toolboxto implement general procedures that derive thBomequations for a classical
or rotary inverted pendula system. If we represémt system’s outputs as a vector of
generalized coordinates [2]:

0()=(6() &) - &) (1)
then the system can be mathematically describetebfzuler-Lagrange equations:
dfaL(t)|_aL(t), ap(t)

dt\ 00(t) | 90(t) od(t) =Q'(1) @)
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where L(t) (Lagrange functiopis defined as the difference between the systémitic and
potential energy,D(t) (Rayleigh, dissipation functidrdescribes the viscous (friction) forces

and Q (t) is the vector ofjyeneralized external forcescting upon the system. The process of

derivation of the motion equations to describe kimgl of inverted pendula system is hence
transformed into the determination of kinetic, poig and dissipation energies related to the
base and all pendula. Using well-known physicairigiae, general relations that describe the
energetic balances of the base aitill pendulum in an inverted pendula system weré/eleér
These can be found in [2] for the system of invéptendula on a cart and derived analogously
for the rotary pendulum system. The whole derivafioocess can be tracked in the command
window (see the preview in [1]).

Using theDerivator tool, mathematical models of both the classicalbd® and rotary single
pendulum system were generated. The motion equatiere rewritten into the standard
(minimal ODE - ordinary differential equation) form

M (0(t))éi(t) + N (0().6(1))(t) + P(o(1) =V (t) ©)
which provides the only way to express this kingystem in the nonlinear state-space form of

x(t) = £ (x(t).u(t).)

y(® = g(x(t).u(t).1 @

by defining the state vector ad) :(6{t) (;{t))Tand isolating the second derivatigét) from (3).

B. Selected inverted pendula models — model analysis

The classical double inverted pendulum sysiéhg. 1a) is composed of a pair of rigid rods
which are interconnected in a joint and one of ¢hissattached to a cart. The mathematical
model of the system has the form of three rathenptex second-order nonlinear differential
equations which describe the dynamic behavior @fcdrt and both pendulum links:

m,+m+ m (5 mi+ "aljcofj() L micos ()
? ? 4,1

@mlﬁmzlljcosﬁ’l(t) 3+ mpf % m,Ll,cof6 (§-6 (1) 9%‘)) *
6,(t
%mzlzcosﬁz(t) %mzlll ,cofo1)-6.{1) J,
3 —[%mlll+ mzlljél(t)sinel(t) %mzlzcosﬁz(t) )
4t
+ %mlllcoeﬂl(t) 0,+0, —52—%mg1ﬁ{t)sin(@(t)—@{t)) H(I) +
%mzlzcoeﬂz(t) —52—%m2|1|p4t) sifo{t)-6 {t)) 3, %0
° F(Y)
+ —@mn}j glsing (4 |=| 0
. 0
—Englzsinez(t)

(5)

where m, is the cart massm , m, are the pendula massds, |, are the pendula lengths,is
the friction coefficient of the car),, 5, are the damping constants in the joints of thedpkn

J; =%mlll2 J, =%mzlg are the moment of inertia of the pendula with ee$po the pivot points

and F(t) is the force induced on the cart.

Therotary single inverted pendulum systé¢ig. 1b) consists of a pendulum rod attached to
an arm rotating in a horizontal plane. Once agdie,mathematical model of the system, as it
was generated by thBerivator, is composed of two second-order nonlinear difféad
equations which respectively correspond to theryaam and the pendulum:
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'%mllollcos@(t) 3 1)
4, _%rnllollgl(t)Singl(t) 9 (t)
i a0 ©
- mt6,()sina6,(1) s, 1
[0 (M0
T———y

where m,, m stand for the masses of the arm and the pendulym, are their respective

lengths, ,, 9, are the damping constants in the joints of the anch pendulum, = lmo 12

and J, = %mllf are the moments of inertia of the arm and the pleind with respect to their

pivot points andM (t) is the input momentum applied on the arm.
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Fig. 3 Classical double inverted pendulum systene thehavior — cart position and pendula angles
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Fig. 4 Rotary single inverted pendulum system tirabavior — arm and pendulum angles

Both models were included in thBMaC block library in form of atomic Simulink blocks
with a dynamic mask which supports useful featswsh as editable parameter constants and
initial conditions as well as an adjustable numbkemput and output ports [1]. The obvious
complexity of model equations is the price paiddgvarticularly accurate simulation model. To
determine the behavior of the models in responsntonpulse signal, simulation experiments
were performed, to satisfactory results (Fig. 8. Bi). Long-observed empirical findings about
pendula behavior are confirmed: each pendulum ef dfistem passes through oscillatory
transient state until the system reaches the stdpldibrium point with all pendula pointing
downward. The backward impact of the pendulum/pendin the base (cart/arm), which
increases with the weight of the load, is alsoblési The models can therefore be considered
accurate enough to serve as a reliable testbembfdrol algorithms.
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[ll. CONTROLALGORITHM BLOCKS

Controllability properties of inverted pendula gsts were verified using both the double
and rotary inverted pendulum system [3][4][5]. Imler to meet the standard control objective
in pendula systems, i.e. to stabilize all pendulunks in the upright, unstable positiolinear
methods of synthesis were used. As a result, liaparoximation of the originally nonlinear
inverted pendulum systems is required. The procassbe considerably sped up with help of
another GUI tool from théPMaC: the Inverted Pendula Model Linearizator & Discretizén
case the system type, model parameters and eduititpoint have been provided by the user,
the tool generates the numeric state-space matnicaslinearized system using the standard
(Taylor) series expansion around a given equilibripoint (Fig. 5)[3]. The discretized state-
space matrices of the system, necessary for disstate-space control design, are also returned
if the sample time constant has been provided.

B Inverted Pendula Mode! Linearizator & Discretizer [
Inverted Pendula _ Model et
Model |__|nea|_'|zator & Cant mass (m): 05 Arrm length (100 05 Friction cosfficient (deltad) 03
Discretizer
Lower pendulum mass (m1): | 0275 | Lower pendulum length (I1) 05 Damping caefficient - lower (deltal) 0.1
— Inverted pendula system type
Mo s Upper pendulum mass (m2): | 0275 | Upper pendulum length (I2) 05 Damping coefficient - upper (delta2) 0.1
e Linearize system... Lower pendulum position: up > Upper pendulum position; |vp T
auble -
— State-space mal
— Type of system
State matrix A Input matriz B: Output matrix C
@ classical 0 0 0 1 ] o 0 1 o ] 0 1] 0
& rotary i 0 00 1 1 0 il 1 o0 o0
0 0 0 1} i} 1 0 0 o 1 o a 1)
0 88992 08992 05185 1037 05926 1.723
0 7358 78 133 1139 7758 -4.444 Feedforward matrix D
0 -8339 6313 04444 1834 1422 1.482

a
o
a

Discretize system... | Samplatime: [ 04

— Discretized stats matrices

State matrix F Input matrix G: Output matrix C:

4 003334 0001762 009753 0001936 0001469 0003041 + o o a0 o
0 1231 00823 0004943 007815 001831 001648 a4+ o o 0o a
0 01671 1206 0000613 D.04162 006776 0001871 5 o0 1 o0 1 1
0 06126 005639 095 001665 002318 01579

0 4031 DER43 00S0E3 07072 0285 03028 )

0 9883 345 DAY DEB2Y  05ES3 008382 festfometiniani D

o
o
[1}

Fig. 5Inverted Pendula Model Linearizator & Discretiz8tJI tool in use:
linearized and discretized state-space matricéiseoflouble inverted pendulum system

All inverted pendula systems included in tfaC were modeled in a way which defines
the “all upright” equilibrium asx(t) = x; =0". If u(t)=us =0, the state-space description of
the continuous linearized system is given as

x(t) = Ax(t) +bu(t) )
y(t) = Cx(t) + du(t) °
in case A, b, C, d are the numeric continuous state-space matricesrged by the
Linearizator & Discretizetool.

To provide program support for inverted pendulaticnlinear state-space algorithms were
implemented into Simulink and encapsulated into aglyic-masked control blocks. Most
importantly, theState Space Controlldlock evaluates the relation

u(t) = u (9 +u(9+ d(§=—lx(d+k, w3+ d(3, ®)
where k is thefeedback gairwhich brings the system’s state vector to theioraf the state
space [3][4],k, represents theetpoint gairwhich needs to be applied if a nonzero required

value is specified andju(t) is the unmeasured disturbance. To match an additicontrol

objective (initial deflection, compensation of disiance signal, tracking a reference position of
the cart or a combination of the three), the blscippearance may be adjusted by optional
enabling or disabling of the nonzero setpoint ingift) and the disturbance input, (t) -

The State Estimatoblock implements the Luenberger state estimator:
X(t) = AR (t) + bu(t) + L (y(t) - CX(t)) (9)
whereL is the estimator gain matrix an”((t) is the estimated state vector ([2][6]).
The Demo Simulationssection of thelPMaC documents several simulation experiments
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which were performed to prove that both the LQRiglesd controller and standard pole-
placement are able to meet the required contra@atibes for both systems in question. Fig. 6
and Fig. 7 show the simulation results in casectirdrol objective was to maintain the desired
cart position/arm angle while keeping the pendupenflula upright. Measurement limitations
were simulated and an estimator block was includdabth schemes to provide the controller
block with a complete state-space vector (seed@{He structure of control loop)

Cart Position - Reference Trajectory Pendulum (Lower & Upper) Angle Stabilization
0 T T T T T T T T T T T T T T
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Fig. 6 Classical double inverted pendulum: simolatiesults for pole-placement control, estimatehided
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Fig. 7 Rotary single inverted pendulum: simulatiesults for LQR control, estimator included; ndtattthe arm is
supposed to rotate for exactly a half-circle befetarning to its initial position

IV. CONCLUSION

The purpose of this paper was to propose an ofigioaception of solving the task of
modeling and control of the inverted pendula dymainsystems. Using the custom-designed
Simulink block librarylnverted Pendula Modeling and Contrahd custom program tools with
graphical user interface, classical double andyatmgle pendulum systems were analyzed and
modeled. Algorithms of linear state-space conthdlt tstabilize the pendula in the inverted
position were incorporated into the demo simulatiechive of the library.
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