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Abstract:  The aim of this paper is to provide a complex view of the modeling and simulation of 
inverted pendula systems. Crucial modeling procedures such as the derivation of differential 
motion equations for inverted pendula systems and symbolic linearization with respect to a given 
equilibrium point are presented in form of symbolic MATLAB algorithms, generalized for a 
system of n inverted pendula. The algorithms are then used to derive accurate mathematical 
models of a single and double inverted pendulum as well as their linear approximations. The paper 
then presents Inverted Pendula Modeling and Control, a thematic Simulink block library designed 
by the authors. As part of the library, the open-loop dynamics of the models is analyzed in a series 
of simulation experiments and a set of suitable state-space control algorithms that stabilize the 
pendulum in the inverted position is designed and supported by a set of library blocks. 
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1 INTRODUCTION 

Inverted pendula systems represent a significant group of mechanical systems used in control 
education with a variety of practical applications, including (see [Jadlovská, 2009], [Sultan, 2004]): 
• simulation of the unstable system of a human or robotic upper limb if the center of pressure is 

placed below its center of gravity 
• modeling a human or a robot standing upright 
• simulation of a space shuttle or a rocket taking off 
• missile guidance, if thrust is actuated at the bottom of a tall vehicle 

Thorough physical analysis is generally required to obtain mathematical expressions that 
model the real system dynamics with such accuracy that it is possible to use them as substitutes in case 
a laboratory model is unavailable. Despite the fact that inverted pendula analytical identification is 
considered a well-explored matter and the equations of motion of this type of a system are standardly 
included in a number of sources (e.g. [Schlegel et al., 2005] provides the equations for a single, double 
and triple pendulum model), a general algorithm, which would output the equations of motion for 
any given number of pendula, has not yet been introduced. Since the force summation method based 
on Newton’s laws of motion tends to be error-prone and cannot be easily transformed into an 
algorithm, this paper uses the Lagrange approach to perform the derivation of the motion equations. In 
order to obtain as precise an approximation of the real model dynamics as possible, Rayleigh 
dissipation function that describes the viscous system damping and friction was integrated in the 
standard Euler-Lagrange equation. The biggest advantage of the Lagrange mechanics employment is 
that it can be easily algorithmized into a MATLAB function (m-file). 

In a similar generalized way, a linearized model, which is necessary for any linear feedback 
controller design, is created. The use of linear controllers upon nonlinear systems is justified by the 
easily verifiable assumption that the behavior of a linear approximation near to the equilibrium point 
shows little error compared to the nonlinear original. 

Block libraries represent the object-oriented, event-flow-driven, user-friendly problem-solving 
approach within the MATLAB/Simulink environment. Through the Simulink Library Browser, a 
number of pre-installed (Toolbox) libraries can be accessed and used to solve or simulate various 
scientific and technical issues by means of block interconnecting. Furthermore, to provide a wider 
variety of problems with such user flexibility, custom masked blocks may be created and grouped into 
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user-designed libraries. The final section of the paper describes a block library which was developed 
to provide such software support for the simulation and control of inverted pendula systems. 

2 MATHEMATICAL MODELING 

2.1 Motion Equations Derivation – General Procedure 
The nonlinear mechanical SIMO system of n inverted pendula on a cart is composed of n  

homogenous, isotropic rods which are joint-bound together and attached to a stable moving base. The 
input of such a system is the force acting upon the cart; the multiple, i.e. 1+n  outputs are represented 
by cart position [ ]m  and pendula angles[ ]rad . Only the cart position is directly affected by the input 
force, therefore any system of inverted pendula is considered to be under-actuated. 

This section outlines the theoretical background, assumptions and derived formulas that led to 
the creation of an algorithm which derives the equations of motion for any given number of pendula 
attached to a cart. The algorithm was implemented into MATLAB under the name of 
invpenderiv.m. The number of pendula needs to be specified as the function parameter.  

Throughout the derivation process, we assume that 
• all motion is bound to the xy plane with the cart moving along the line identical to x axis, which at 

the same time represents the projection of the zero potential energy level into the xy plane 
• the value of every angle is determined clockwise from the upright position 
• all parameters are indexed in the following manner: 0  is assigned to the cart, 1 to n  represent the 

individual pendula starting with the pendulum rod attached directly to the cart 
Let us first introduce a vector of generalized coordinates, which correspond to the system’s 1+n  
degrees of freedom, i.e. its outputs: 

 ( ) ( ) ( ) ( )( )T
n tttt θθθ K10=θ  (1)  

The Euler-Lagrange equations represent the system’s degrees of freedom each and in the condensed 
vector form they appear as: 
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where Lagrange function (Lagrangian) is defined as the difference between the system’s kinetic and 
potential energy 

 ( ) ( ) ( )( ) ( )( )tEttEtL PK θθθ −= &,  (3) 
Rayleigh (dissipative) function describes the viscous (friction) forces within the system 

 ( ) ( )( )tDtD θ&=  (4) 

and ( )t*Q  is the vector of generalized external forces acting upon the system. 

From now on, we will use ( )ts xi , ( )tsyi  to denote the coordinates of position and ( )tvxi , ( )tvyi  

will denote the velocities in the direction of the axes. The nomenclature of the numerical parameters 
that describe the system will obey the standard conventions: 

[ ]kgmi     –  mass of the cart ( 0=i ) and the pendula ( 1=i to ni = ) 

[ ]mli     –  length of i -th pendulum 

[ ]2−msg    –  gravitational acceleration ( 281,9 −= msg will be used) 

[ ] [ ]121 , −− skgmkgsiδ   –  friction coefficient of the cart against the surface ( 0=i ) / damping 
constant related to the pivot point of i -th pendulum (i = 1to i = n) 

Construction of Lagrange motion equations:  
Out of all considered subsystems, only the dynamics of the cart is directly affected by the 

external force acting upon the system. Therefore, the vector of external forces has the following form: 

 ( ) ( )( )TtFt 00*
K=Q  (5) 
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Since the total energy of a multi-body system is given as the sum of energies that befit the individual 
bodies, the relations that characterize a system of n  inverted pendula on a cart are: 
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The use of Lagrange equations therefore transforms the process of deriving the motion 
equations into the determination of kinetic, potential and dissipation energies for the cart and all 
pendula. These need to be expressed in terms of the generalized coordinates. 

Energetic balance of the cart: 
Assuming the cart’s motion to be linear, we can describe it mathematically using a single 

spatial dimension. Identifying it as the x  axis, the only position coordinate is denoted as( ) ( )tts x 00 θ= . 

Therefore, the potential energy of the cart equals ( ) 00 =tEP (see assumptions in 2.1). The kinetic 
energy and the dissipation function both depend on the cart’s velocity: 

 ( ) ( ) ( )tmtvmtE xK
2
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1 θ&==  (7) 
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2
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Energetic balance of i-th pendulum: 
Let us suppose that the whole mass of a pendulum rod is concentrated in its center of gravity 

(CoG) which is identical to the geometrical center of the rod in the distance of 
2
il from the pivot point. 

The coordinates of the CoG of i-th pendulum rod are hence expressed as: 
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while the velocities in the direction of the axes equal: 
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The potential energy of i -th pendulum is defined by the height of the CoG above the x  axis: 

 ( ) ( ) ( ) ( )
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and the kinetic energy of each pendulum is a sum of two expressions that describe the pendulum’s 
translational and rotary motion: 

 ( ) ( ) ( )tJtvmtE iTiiiKi
22

2

1

2

1 θ&+=  (12) 

where 2

12

1
iiTi lmJ =  is the pendulum’s moment of inertia with respect to the center of gravity and  

( ) ( ) ( )tvtvtv yixii
22 +=  is the magnitude of i -th pendulum translational velocity. 

The dissipation properties of the i -th pendulum depend quadratically on the angular velocities 
of pendulums marked as i  and 1−i : 
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 ( ) ( ) ( )( )2

12

1
tttD iiii −−= θθδ &&  (13) 

which yields ( ) ( )ttD iii
2

2

1 θδ &=  if 1=n . 

The functions of MATLAB’s Symbolic Math Toolbox enabled us to include the above-
mentioned physical relationships in the invpenderiv.m and, furthermore, to generate a simplified 
and rearranged form of the equations, equivalent to the most likely form obtained by manual 
derivation. An example of the command window output produced by invpenderiv.m is listed in 
[Jadlovská et al., 2009]. In addition to the eventual symbolic motion equations in the “pretty” form, all 
physically significant steps of the derivation process are displayed and can be tracked. 

 
Fig. 1 – Single and double inverted pendulum on a cart – scheme and basic nomenclature 

2.2 Single and Double Inverted Pendulum 
By setting n  to 1, we obtain a system of a single inverted pendulum (Fig. 1, left), which is 

composed of a pendulum rod attached to the cart. The eq=invpenderiv(1) command was used to 
obtain the model which consists of second-order nonlinear differential equations that describe 
the cart subsystem: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )tFttttlmttmm =−+++ 1
2

1111100010 sincos
2

1 θθθθθδθ &&&&&&  (14) 

and the pendulum subsystem: 

 ( ) ( ) ( ) ( ) 0sin
2

1
cos

2

1
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where 2
111 3

1
lmJ =  stands for the pendulum’s moment of inertia with respect to the pivot. 

Connecting a couple of rigid rods in a joint and attaching one of these to a cart produces 
a system of a double inverted pendulum (Fig. 1, right). Analogically to the single inverted pendulum 
system, eq=invpenderiv(2) returns the second-order nonlinear differential equations that describe 
the cart subsystem: 
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the lower pendulum subsystem: 
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and the upper pendulum subsystem: 
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where 2
111 3

1
lmJ = , 2

222 3

1
lmJ =  stand for the moments of inertia of the lower and upper pendulum 

with respect to their pivot  points. 
The automatically generated nonlinear differential equations were, in both cases, identical to 

the equations derived manually (compare (15),(16) to [Roubal, 2002], [Schlegel et al., 2005], (17)-(19) 
to [Bogdanov, 2004], [Demirci, 2004]), which confirms the validity of the algorithm. It is worth noting 
that the complete derivation procedure in the case of a double and triple inverted pendulum, as it was 
included e.g. in [Schlegel et al., 2005], need not have been done. The general physical relationships 
listed in 2.1 instead imply that once the single inverted pendulum model has been derived, all 
energetic balances related to the cart and the lower pendulum of a double inverted pendulum system 
are already known and only those which describe the upper pendulum need to be computed. 

3 LINEAR APPROXIMATION OF INVERTED PENDULA SYSTEMS 

We will next focus on the analysis of inverted pendula systems based on the state-space theory 
of continuous dynamical systems, which describes a nonlinear SIMO system with use of a differential 
state equation and an algebraic output equation: 

 
( ) ( )( )
( ) ( )( )ttutt
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=
=&

, (19) 

where ( )tx  is the state vector, ( )tu  is the scalar input value, )(ty  is the output vector. 

Among the conclusions drawn from the analysis above was that the order of a system of n  
inverted pendula on a cart is 22 +n . Therefore, a state vector in the following form was introduced to 
describe the system: 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )T
n

T
txtxtxttt 2221 ... +== θθx &  (20) 

and the force acting upon the cart was logically defined as the only input of the system: 

 ( ) ( )tFtu =  (21) 
The output equation is defined in such a way so that vector )(ty  would either represent the vector of 

generalized coordinates( )tθ , or the whole state vector (19), if necessary. To determine the state 

equation ( ) ( ) ( )( )T
ttt θθx &&&

& = , the Lagrange motion equations need above all to be rewritten into the so-
called minimal ODE form  

 ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )ttttttt VθPθθθNθθM =++ &&&& ,  (22) 
which makes it possible to isolate the derivative of state-space vector: 
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in which every element of ( )tθ , ( )tθ&  can be substituted by its ( )tx  counterpart. 
The fact that a nonlinear autonomous dynamic system has no tendency to change its state if in 

equilibrium corresponds to equalities 

 ( ) 0x =t& and ( ) 0== Sutu  (24) 
By solving these, we obtain the p  equilibrium points of the system ( pj ,...,2,1= ): 

 ( )( )TSnSSSj xxx 2221 ... +=x  (25) 
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With use of the Taylor series, we can now create the linear approximation to the whole state equation 

by substituting ( ) ( )( )tutf i ,x  by ( ) ( )( )tutf i ,* x : 
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For the case of the upright position, the equilibrium is ( ) T
St 0xx == and since ( ) 0== Sutu , 

and the state-space description of the physically realizable linearized system is given as 
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The described transformation of the Lagrange mathematical model into a state-space matrix 
form was implemented into MATLAB. Since the complexity of symbolic matrices increases greatly 
with increasing order of the system, only the state-space matrices of the single inverted pendulum 
model in the upright position, produced by matrices_single.m, are displayed here as an example.  
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Once again, the command window output of the function can be previewed in [Jadlovská et al., 2009]. 
The generated state-space matrices were proved to be accurate (compare (28) to [Schlegel, 2005]). 

4 IPMAC – INVERTED PENDULA MODELING AND CONTROL (SIMU LINK BLOCK 
LIBRARY) 

A structured Simulink block library under the name of Inverted Pendula Modeling and Control 
(IPMaC) was designed to provide software support for the analysis and synthesis of inverted pendula 
systems. The IPMaC can be fully integrated into the Simulink Library Browser and used identically to 
the pre-installed Simulink block libraries. The following section provides a brief insight into the 
library’s functionality. 

 
Fig. 2 – Simulink blocks of inverted pendula models included in the IPMaC library 

4.1 Open-Loop Dynamical Analysis 
The mathematical models of a single and double inverted pendulum were implemented into 

the programming environment of MATLAB/Simulink in form of atomic library blocks: Single Inverted 
Pendulum on a Cart and Double Inverted Pendulum on a Cart; both with their own icon and 
a dynamical parametric block mask. The block mask of each implemented system makes it possible to 
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change the system’s parameters, specify the initial conditions (which enable the initial deflection 
analysis), enable or disable the input force and adjust the number of outputs, which is equivalent to 
equipping a real model with sensors. The blocks themselves have a cell structure, i.e. each nonlinear 
equation that is part of the system’s mathematical model corresponds to a subsystem block 
interconnected with the others with respect to their mutual physical relations. As an illustration, Fig. 3 
and Fig. 4 depict the inner structure of subsystem blocks Cart and Pendulum within the Single 
Inverted Pendulum on a Cart block, both of which represent an exact transformation of nonlinear 
equations into Simulink block diagrams. 

d2fi 0/dt2

3

dfi 0/dt

2

fi 0

1
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-C-

delta 0
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Fig. 3 – The Cart subsystem within the function block Single Inverted Pendulum on a Cart 
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Fig. 4 – The Pendulum subsystem within the function block Single Inverted Pendulum on a Cart 

Creating complete and functional simulation models of inverted pendula on a cart in form of 
an atomic icon allows for detailed observation of their dynamics with no additional modeling apart 
from input/output block affiliation. The analyses of the open-loop dynamical behavior of both the 
single and double inverted pendulum system were performed as a response to a signal constrained in 
terms of time and amplitude, included in the IPMaC as the Impulse block. To view the signals 
generated during simulation, Scope and Scope rad2deg blocks were used, the latter displaying the 
signal in degrees rather than in radians. Both schemes can be run from the Demo Simulations section 
of the IPMaC, which is basically a collection of links to simulation schemes whose purpose is to solve 
various analysis- and synthesis-related problems. The schemes are composed nearly exclusively of the 
IPMaC blocks. 

The dynamics of single inverted pendulum system was analyzed for two groups of parameters: 

group I: kgm 3.00 = , kgm 275.01 = , ml 5.01 = , 1
0 3.0 −= kgsδ , 12

1 01148.0 −= skgmδ  

group II: kgm 1.00 = , kgm 11 = , ml 8.01 = , 1
0 3.0 −= kgsδ , 12

1 1.0 −= skgmδ  
and the numeric values used in the double inverted pendulum system simulation were: 

kgm 3.00 = , kgm 275.01 = , kgm 275.02 = , ml 5.01 = , ml 5.02 = , 1
0 3.0 −= kgsδ , 12

1 1.0 −= skgmδ , 
12

2 1.0 −= skgmδ  
If we take a closer look at the simulation results (Fig. 5, Fig. 6), several conclusions can be 

drawn independently of the number of pendula attached to a cart:  
 From the moment the cart starts to move as a response to the time-constrained input force 

impulse, its velocity decreases through time and gradually comes down to zero because of the present 
friction. All pendula fall in counterdirection to the cart (1st Newton Law of inertia), passing through 



9th International Conference PROCESS CONTROL 2010 
June 7 – 10, 2010,  Kouty nad Desnou, Czech Republic 

 
_____________________________________________________________________________________________________ 

C134a – 8 

oscillatory transient state before finally stabilizing themselves in the stable equilibrium point in which 
they are all pointing downward. The backward impact of each pendulum on the cart, which increases 
with the weight of the load attached, is also visible. Since such open-loop behavior is correct 
compared to generally known empirical observations of pendula behavior, it can be concluded that 
both models display acceptable overall performance. 
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Fig. 5 – Single Inverted Pendulum on a Cart - cart position and pendulum angle  
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Fig. 6 – Double Inverted Pendulum on a Cart – cart position, upper and lower pendula angles 

4.2 Verification of State-Space Control Algorithms 
The continuous linear feedback methods were employed to demonstrate the controllability 

properties of the simulation model of single inverted pendulum. The control objective was to stabilize 

the pendulum in the upright (inverted) i.e. unstable position, i.e. to maintain the equality( ) Tt 0x =1 , 
while the individual approached problems were: 
• initial deflection of the pendulum (nonzero initial conditions) 
• compensation of a time-constrained disturbance input signal 
• tracking a required position of the cart 
or a combination of the three. The pendulum had to be kept upright in any case. 

It is known (e.g. from [Jadlovská, 2009], [Demirci, 2004], [Jadlovská, 2003]) that if a 
feedback gain k  is applied on a measurable full state vector ( )tx , it brings the system to the origin of 

the state space. A specified nonzero required value ( )tw  requires an additional, setpoint gain vk . The 
control law was therefore constructed in form of the following sum:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )tdtwtxtdtututu uuvf ++−=++= vkk  (29) 

where ( ) ( )txtu f k−=  is the feedback component, ( ) ( )twtuv vk=  is the setpoint component and ( )td u  

is the unmeasured disturbance input. As such, the control law is evaluated within the State Space 
Controller (SSC) block from the IPMaC. The block’s dynamic mask allows the user to pick the 
method to determine the feedback gain vectork : the pole-placement algorithm or the linear quadratic 
regulation (LQR) optimal control method are available, both of which are supported by Control 
Toolbox in form of built-in functions (acker/place, lqr). The nonzero setpoint input ( )tw  and 

disturbance input ( )td u  may optionally be enabled or disabled so as to adjust the block’s appearance 
to match the control objective. 



9th International Conference PROCESS CONTROL 2010 
June 7 – 10, 2010,  Kouty nad Desnou, Czech Republic 

 
_____________________________________________________________________________________________________ 

C134a – 9 

In case we suppose that measurement limitations make it impossible to retrieve the state space 
vector as a whole, an estimator is included in the control loop to provide the approximated 
(reconstructed) state vector ( )tx̂ . The principle of Luenberger state estimator lies in the gradual 

minimization of the estimation error ( ) ( ) ( )ttt xxx ˆ~ −= . To keep the time behavior of the error 
independent of system parameters, i.e. to maintain: 

 ( ) ( ) ( )tt xLCAx ~~ −=&  (30) 

where L  is the estimator gain matrix, the estimator creates a model of the original system in the form:  

 ( ) ( ) ( ) ( ) ( )( )tttutt xCyLbxAx ˆˆˆ −++=&  (31) 
which is the relation evaluated within the State Estimator block. Once again, the block mask allows 
the gain to be determined alternatively through pole-placement or linear quadratic control method, 
according to the user’s choice. 

Step
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Fig. 7 – Examples of control simulation schemes 

The example schemes above illustrate two ways of interconnecting the blocks that result in a 
control scheme for the single inverted pendulum system. A simulation scheme of a linearized and a 
nonlinear model is shown, with the State Space Controller and State Estimator blocks as part of both 
schemes. The adjustment of the number of block inputs is also demonstrated. As was the case with 
open-loop analysis, these schemes can be located in the Demo Simulations section of the IPMaC. 

Fig. 8 and Fig. 9 document the time-dependent behavior for both the cart position and the 
pendulum angle of the nonlinear single inverted pendulum system in case the control objective is to 
maintain the desired cart position while keeping the pendulum upright; no disturbance input was 
considered. In order to use the linear methods of synthesis, the linearization of the nonlinear inverted 
pendulum system was performed by calling the matrices_single.m function. Using the parameters 
from group I (section 4.1), the following linear state-space matrices were obtained: 
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In Fig. 8, the effect of selecting ( )ii 42.142.125 −−+−−−  for the designed poles of the system 

is shown. The feedback gain vector k  of ( )6130.21803.35934.173704.3 −−−  was computed 
and applied on the system. Fig. 9 depicts the results of a LQR-based controller design. In the 

minimized quadratic functional ( ) ( ) ( ) ( ) ( )dttRututttJ ff
T

LQ += ∫
∞

Qxx
0

, both weighting matrices are 

diagonal and chosen to be ( )0200500diagQ = , 1=R . The principle of separability allows the 
feedback and estimator gains to be determined independently of each other, i.e. using a different 
method. Setting the estimation error matrix poles to ( )43424140 −−−− , which made them 
about 10 times faster than the controller poles, resulted in the following estimator gain matrix: 

T









=

8.17076.403.820.1

9.1715.16776.25.82
L . 

0 2 4 6 8 10 12 14 16 18 20

0

0.05

0.1

0.15

0.2

0.25

0.3

Simulation time [s]

C
ar

t 
P

os
iti

on
 [
m

]

Cart Position - Reference Trajectory (Pole Placement)

 

 

Cart Position Setpoint [m]
Cart Position [m]

0 2 4 6 8 10 12 14 16 18 20
-3

-2

-1

0

1

2

3

4

Simulation time [s]

P
ol

e
 A

ng
le

 [
de

g]

Pole Angle Stabilization - Pole Placement

 

 

Pole Angle Setpoint [deg]
Pole Angle [deg]

 

Fig. 8 – Single Inverted Pendulum on a Cart – simulation results for pole-placement control without 
estimator (cart position, pendulum angle) 
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Fig. 9 – Single Inverted Pendulum on a Cart – simulation results for LQR control with pole-placement-
designed estimator (cart position tracking, pendulum angle stabilization) 

The simulation results reveal that both control blocks do reasonably well. The ability of the 
designed blocks to control the system with respect to all above-presented requirements has been 
demonstrated for both methods, although LQR control produces slightly better results despite the need 
for an estimator. Overally, the simulation results justify the use of linear control methods to control 
nonlinear systems. 

CONCLUSION 

The purpose of this paper was to propose an original conception of solving the task of 
modeling and control of inverted pendula dynamical systems. It focused on demonstrating the analogy 
which is found when we derive mathematical models for systems of n  inverted pendula on a cart for 
a changingn . Practical importance of symbolic mathematical software was pointed out as Symbolic 
Math Toolbox was used in the process of development of general symbolic procedures that either yield 
the equations of motion of inverted pendula systems and hence automatize the mathematical modeling, 
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or perform the symbolic linear transformation of a specified nonlinear system. Such approach should 
eliminate all factual or numeric errors that should arise during the process of mathematical modeling. 

The transformation of the derived equations of single and double inverted pendulum system 
into Simulink block schemes was the basis of the creation of inverted pendula simulation models 
which were integrated in the IPMaC, a structured Simulink block library designed by the authors of 
this paper. The core of the library is therefore represented by the dynamic-masked simulation models, 
pre-prepared for use in open-loop analysis as well as state-space controller design.  

The IPMaC block library was introduced in [Jadlovská, 2009] and is going through constant 
improvement process. Using the automatic mathematical model derivation, further expansion of the 
modeling section should be straightforward. A section on rotary inverted pendula, where the base is 
moving in a plane rather than in a single coordinate, is being designed to serve as software support for 
a newly-purchased laboratory model of single rotary inverted pendulum. To enable further verification 
of the controllability properties of inverted pendula systems, all included systems should also become 
control plants. Finally, as it was hinted in [Jadlovská et al., 2009], the release of the next version of the 
IPMaC should contain a notably expanded control section, i.e. a wider variety of controller blocks and 
control schemes in addition to the already included feedback control algorithms.  

In summary, we believe that the idea of creating a thematic Simulink library, which would 
group accurate simulation models of mechanical systems together with useful input/output blocks, 
suitable controller blocks and demonstration simulations, could find its use for a number of types of 
dynamical systems. Libraries of hydraulic or electrical systems could follow the steps of the IPMaC, 
which we consider as a contribution to modeling and control education at technical universities. 
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