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Abstract

The purpose of this paper is to present the demighnprogram implementation
of expansions made to the existing general algoigtprocedure which yields the
mathematical model for a classical inverted penuuBystem with an arbitrary
number of pendulum links. The expansions inclugedption to define the refer-
ence position of the pendulum in a planar cooreirsgstem, to choose the refer-
ence direction of pendulum rotation and to seleets¢hape of a weight attached to
the last pendulum link. The underlying physicahfiotae based on the generalized
inverted pendulum concept are implemented in fofnra symbolic MATLAB
function and a MATLAB GUI application. The validitgnd accuracy of motion
equations generated by the application are denaiadtby evaluating the open-
loop responses of simulation models of the clabsicale and double inverted
pendulum system using newly-developed MATLAB bloeksl applications.

Keywords: classical inverted pendulum system, attached weigdference
pendulum position, automatic model generation, siimtMATLAB function

1 Introduction

Stabilization of a physical pendulum or a systemndérconnected pendulum
links in the upright unstable position is a benchagoblem in nonlinear control
theory [1]: in recent years, several types of $itabg mechanisms such as cart
moving on a rail [2], rotary arm [3] or vertical @kating base have been intro-
duced. Inverted pendulum systems (IPSs) are threreégularly employed as typ-
ical examples ofinstable nonlinear underactuated systemthe process of veri-
fication of linear/nonlinear control strategiesdorresponding control structures.
Direct practical applications include walking huro@hrobots, launching rockets,
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earthquake-struck buildings and two-wheel vehislesh as th&egway PTPrin-
ciples of modeling and control of IPSs can furtherconsidered as the basic start-
ing point for the research of advanced underaafusystems such as mobile ro-
bots and manipulators [4] as well as aircraft aatiencraft vehicles [5].

We focused our research on the mutual analogy ammtlgematical models of
IPSs with a varying number of pendulum links. Capsmntly, we introduced the
concept of ageneralized n-link inverted pendulum systesth n+1 degrees of
freedom (DOFs) and a single actuator, which alltaviseat an arbitrary IPS as a
particular instance of the systemropendula attached to a given stabilizing base.
General procedures which determine the Euler-Lagraquations of motion for
a user-specified instance of a generalized clds@iea on a cart) and rotary IPS
were developed and implemented via MATLABgmbolic Math ToolboMd].

The design and implementation of the general ghaes has so far been based
on the assumption of interconnected pendulum rdusse angle is determined re-
lative to a fixed planar/spatial coordinate systamd their center of gravityCpG)
is identical to their geometric center. The goatho$ paper is to expand the exis-
ting procedures for automatic model generation lagical IPSs with further,
practically motivated generalizations. The papeoriganized as follows. Firstly,
the generalized classical IPS which has been stustiefar is presented, this time
as the basic starting point for further researolio Tategories of expansions are
next described in terms of their impact on generathematical model derivation:
change inCoG position of a pendulum caused by a weight atta¢bets end and
the option to specify the orientation of the pendulreference position, together
with the reference direction of pendulum rotati®he next section details the im-
plementation of an expanded general procedure whinsds to ultimately cover
all possible forms of models found in relevantrhteire by including all possible
combinations of wunderlying assumptions for pendulumference posi-
tion/direction and the existence of attached waighinally, the validity and accu-
racy of the procedure is verified using the cleasgingle and double IPS, both
represented by pre-prepared Simulink blocks encegipg all investigated fea-
tures, and the paper is concluded with an evalnati@chieved results.

2 Expanded Generalized Classical Inverted Pendulur8ystem

The generalized system of classical inverted penduda introduced in [1] as
a set ofn =1 rigid, homogenous, isotropic rodsefdulum linkswhich are inter-
connected in joints and attached to a stable chithvenables movement along
a single axis. A multi-body mechanical system dedithis way isunderactuated
since it has fewer actuators than DOFs [4]: they amput (forceF(t) acting upon
the cart) actuates the cart position] [as well as then pendulum anglesrgd].
Through the mathematical model derivation proced4]i it was assumed that all
motion was bound to a planar coordinate system tigghcart moving along the
axis, which was simultaneously identified with fh®jection of the zero potential
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energy level into th&y-plane. The value of every pendulum angle was deted
clockwise with respect to the vertical upright piasi of the pendulum, which was

defined as parallel to theaxis (Fig. 1).
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Fig. 1. Generalized system of classical inverted pendieheme and basic nomenclature

According to the Lagrangian formulation of claskiteechanics, every possible
configuration of a multi-body system can be unigu##fined by a vector of gen-
eralized coordinates equivalent to the system’s<which are, in the case of a
generalized classical IPS, identified as cart posind pendulum angles:

)

ot)=(a() at) .. a@)
For every generalized coordinate, a nonlinear stooder differential motion

equation is specified by employifiler-Lagrange equationdefined in the form:
(2)

d [OL(t) _oL(t), ap(t) _ o

dt( ag(t) | 00(t) aa(t)
whereL(t) is the difference between the multi-body systekiretic and potential
energy,D(t) stands for the dissipation properties &ftdt) is the vector ofenera-
lized external input$6]. The process of mathematical model derivafimna se-
lected IPS hence transforms into a procedure &rihiie its kinetic, potential and
dissipation energy, each defined as a sum of ee®iafi the multi-body system’s

|

individual bodies, i.e. the caiit:(0) and all pendulum links%£1,...n):
(3)

Ec (=2 Eq(t) \E-()=D Ex(1), D)= _D(t)
i=0 i=0 i=0
While the potential energy dfth body depends o€oG position coordinates,
CoG velocity components need to be obtained to spédifgtic energies or dissi-

pative properties [7]. The actual physical formulggch form the core of the pro-
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cedure for a generalized IPS were derived in [H presented together with gen-
erated motion equations of example IPSs and thécadion of their validity.

2.1 Modified Mass Distribution as a Result of Attached Weight

As the first expansion to the generalized IPS, amsitered a system with an
arbitrary number of inverted pendulum links mounteda cart, in which a weight
with a specified shape is firmly attached to thd efithe pendulum link further-
most from the cart. Therefore, forl,...,n-1, the whole mass of a pendulum rod is
concentrated to th€oG located midway from the pivot point, but fiem, the at-
tached weight causes tlB®G of apendulum link with weighb shift away from
the geometric center of the homogenous rod.

Fig. 2. Considered weight shapes: sphere, cylinder, ring

By computing the distance between eG of the weighted pendulum link
and the pivot pointCoG position and velocity coordinates followed by teth
potential and kinetic energies were derived andlmifound in [8]. To fully ex-
press the kinetic energy, the moment of inertithefweighted pendulum was cal-
culated as the sum of moments of inertia of thedpkmm rod and the weight it-
self. Three shapes of weight — sphere, cylinderrargl(Fig. 2) were considered,
however the algorithm can be applied to all symimeigotropic bodies with
known moments of inertia, since the resulting eiguatof motion only differ by
the moment of inertia of the attached weight.

2.2 Modified Pendulum Reference Position

Most differences between the correctly derived iiteg pendulum models fo-
und in various sources can be attributed to th&lrihoice of reference position
for all pendulum links and the reference directadrpendulum rotation, both of
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which determine the numeric value of the pendulungleaat every time instant.
Our next goal was therefore to expand the proceduinsathematical model deri-
vation for generalized IPS so that all feasible bovations of initial assumptions
would be covered. Eight possible combinations érence pendulum positions
with respect to a planar coordinate systéop,(bottom right, left) and pendulum
movement directionsclockwise counterclockwise were considered (see Fig. 3
for examples). During the derivation process, whi@s recorded step-by-step in
[9], the selected combination of initial assumpsiowas shown to have direct
influence on the coordinates &oG position of each pendulum link and
subsequently on the relat&bG velocity components, on the expressions for ki-
netic and potential energy, and finally, on theiotoequations in their final form.

6,

Fig. 3. Examples of reference frame definitions — a) bottdockwise b) right counterclockwise

3 Expanded General Procedure for Mathematical Model
Derivation — Program Implementation and Application

Using the familiar theoretical background as weltlze newly-derived physical
formulae, we completely reworked the earlier genatgorithmic procedure so
that it would yield a mathematical model of an aeby classical IPS with respect
to user-selected criteria for attached weightsariulum reference position. The
procedure was once again implemented as a MATLAR(tian which generates
the nonlinear equations of motion vi&ymbolic Math Toolboin the simplified
and rearranged form, equivalent to the most likelyn obtained by manual deri-
vation. An application with graphical user integamverted Pendula Model Equ-
ation Derivator_v2 was also developed to provide a user-friendlyessdo the
function. Compared to the earlier version of Derivator where the user could
only select the number of pendulum links [10], faytions for weight type (in-
cluding none) and eight for reference positionfdien are now provided. As
a further improvement, the equations can now bplaled in form of LaTeX ex-
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pressions in addition to the original MATLAB repeesation. Fig. 4 shows an
example preview of thBerivator_v2window which contains the generated model
equations for the classical double IPS with arnchttd cylinder-shaped weight.

Inverted Pendula Mode! Equation Derivator_v2. o= [ ]

Inverted Pendula Model Equation Derivator_v2
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Fig. 4. Inverted Pendula Model Equation Derivator — ver- ZUI application for mathematical
model generation for classical IPSs, ,,C" is @&G-to-pivot distance for the-th pendulum link

By evaluating the results of the implemented expdngeneral procedure, we
concluded that the mathematical model of the oaiggeneralized classical IPS
(i.e. without attached weight) represents a speciat of a model of the weighted
IPS in case the weight mass is set to zero, wheches as a confirmation of the
procedure’s accuracy. Analogically, the originakegfication of a generalized
IPS, characterized by a particular combinatiomdfal assumptions about the re-
ference position and rotation of the pendulum, fm®gomes a representative of
a family of models related to the same physicalesyswith confirmed validity.

3.1 Verification of Generated Mathematical Models of Classical
I nverted Pendulum Systems

A structuredSimulink block library, Inverted Pendula Modeling and Control
(IPMaC), has been developed since 2009 as a comprehestgtweare framework
for the analysis and control of IPS in the simwalatenvironment. To reflect the
expansions outlined in previous sections, librdocks which implement the mo-
tion equations of thelassical singleandclassical doubldPS were equipped with
newly-implemented properties. As a result, the gsiesn mask of both blocks
now allows the user to dynamically change the patars of the simulation
model, specify the number of input and output pdhs shape of attached weight,



7

reference pendulum angle value and reference direaf pendulum rotation. The
possibility to switch to a simplified model, whicteglects friction and omits the
backward impact of the pendulum links on the cads also implemented. The
necessity to create a separate block for each sefuations was eliminated by ca-
llIbacks which ensure the dynamic adjustment oftaloek structure, so that it will
always correspond to a specific set of motion aqnatA GUI applicationAnaly-
sis of Inverted Pendulum Syster®olPS was developed in MATLAB as
a graphical tool to monitor, analyze and evaluaie ¢pen-loop dynamics of a
selected classical IPS in a single window. For yw@mulation experiment, a
scheme containing a suitable Simulink block is imuthe background, block pa-
rameters are set to values specified in the Gl ,simulation results are exported
into separate figures for further investigation.

It will next be assessed whether the generatedanstical models of classical
single and double IPSs can be considered as vatichecurate for control design
purposes. Using th&olPStool, open-loop responses to an impulse signastcan
ined in time/amplitude were obtained for both siatetl models, starting from the
initial upright equilibrium. Numeric parameters wespecified in [8][9].

Cart Position Analysis - Single Inverted Pendulum Pendulum Angle Analysis - Single Inverted Pendulum
14 0 T T T T

! ! |[ s Complete pendulum
|| = = Simplified pendulum
T T

Cart position [m]

12

8
Simulation time [s]

Fig. 5. Classical single inverted pendulum system — casttijpn and pendulum angle in a com-
plete vs. simplified model

Simulation experiments which illustrate the dynasnié simplified models of
IPSs or analyze the influence of the pendulum’sifremtimass distribution on the
system dynamics were evaluated first. The compaddime behavior of the cart
position and pendulum angle for the complete ampkiied model of aclassical
single IPS is depicted in Fig. 5, while the dynamics loé tlassical doubldPS
with different attached weights is evaluated in.Egln both cases, all pendulum
links fall from the upright into the downward edhbiium through a damped oscil-
latory transient state and stabilize there, in déanpe with the empirical observa-
tions of pendula behavior. In the simplified modéle pendulum makes a very
long transition to the steady state as a resutiegiected friction, and the cart tra-
jectory correctly shows no signs of the backwargaot caused by the pendulum
movement. If weight is attached to the upper pandulthe pronounced "jerky"
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cart movement is caused by the inertia of the leegy@ndulum link. Total dam-
ping of a weighted system is much lower than tHahe system with no weight
load, which is reflected on larger oscillationspeindulum links and their prolon-
ged settling time. The differences between the ohjos of systems with different
types of weights are minimal.

Cart Position Analysis - Double Inverted Pendulum
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Fig. 6. Classical double inverted pendulum — cart posiéiod pendula angles for different sha-
pes of weights, including no weight

The following simulation experiments evaluate th#uence of combinations
of initial assumptions on the response of IPSs. Fidepicts the dynamical beha-
vior of aclassical singldPS after selecting four starting positions whigry by
90° ¢op, left, down, right while the pendulum angle is determined clockwise
all cases. The effect of the direction in which gendulum angle is determined
(clockwise / counterclockwisés shown on a@lassical doubldPS in Fig. 8. It has
been proven that the changes in initial assumptiawe no effect on the dynamics
of either the cart or the pendulum links, and ahlg graphical representation of
pendulum behavior is subject to change. Choicé@feference value of the pen-
dulum angle determines the numeric value correspgrtd the upright/downward
position of the pendulum, and the selected referetiection defines whether the
pendulum angle will increase or decrease duringikition, as it is clear from the
~mirror image" depicting the pendula behavior igF3.
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Cart Position Analysis - Single Inverted Pendulum woPendqum Angle Analysis - Single Inverted Pendulum
e b e ‘~ E==y ‘ ‘ ‘ ;
\
\ | | | |
12- ————— k- —— -~ d_ 0 [ !
0 | i
— | |
I---——-- by ! !
_ 3 o P
3 @
Sog-————— 2
2 & 0o — Wl [\ V VA
8 £
e e R T T 2
%‘ =}
8 Saoo- - - pHGEy Y Y- o
04 —— = f—m ———m—m——m—————— &

=== top - clockwise
= =left - clockwise
02 == ¥ =17 = 7 7 7 777 7 7|==down-clockwise|~
| == =right - clockwise
1

|
|
I -500 L
15 20 o 5

== top - clockwise
| == =left - clockwise
| ==down - clockwise
j = right - clockwise

15 20

A
S
=)

10 ] 10
Simulation time [s] Simulation time [s]

Fig. 7. Classical single inverted pendulum system — aasttipn and pendulum angle — effect of
the changing reference position of the penduluop:-Ieft, down, right

Reasonable behavior of the open-loop responsesthf simulation models
means that under all criteria, systems describeithdgenerated motion equations
can be considered accurate enough to serve asmhblediestbed for the verifica-
tion of linear and nonlinear control algorithms.

Cart Position Analysis - Double Inverted Pendulum Pendulum Angles - Double Inverted Pendulum
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Fig. 8. Classical double inverted pendulum system — aasitipn and pendulum angles determi-
ned in a clockwise / counterclockwise referencedlion

Conclusion

The purpose of this paper was to expand and fugbeeralize the existing al-
gorithmic procedure for obtaining the equationsnaition of classical inverted
pendulum systems (IPSs) with an arbitrary numbgresfdulum links. The expan-
ded general procedure covers all feasible comlinatof initial assumptions for
the pendulum reference position and direction édtion, and considers various
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shapes of weight load attached to the last pendlihkm A GUI application was
developed to provide an intuitive interface to MATLAB function which im-
plements the procedure. The validity of generatedion equations was confir-
med by evaluating open-loop responses of simulatioadels of classical single
and double IPS with emphasis on the newly-introdifeatures.

The results of this paper allow the control engineesffortlessly obtain a hig-
hly accurate, error-free mathematical model oflacted IPS, simplifying the pro-
cess of model-based control design. Moreover, ¢aelity available collection of
mathematical and simulation models of IPSs caregarded a testbed model ba-
sis for exploring properties of underactuated meida systems and consequen-
tly, as a starting point for research in mobile amhipulator robotics.
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