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Abstract 

The purpose of this paper is to present the design and program implementation 
of expansions made to the existing general algorithmic procedure which yields the 
mathematical model for a classical inverted pendulum system with an arbitrary 
number of pendulum links. The expansions include the option to define the refer-
ence position of the pendulum in a planar coordinate system, to choose the refer-
ence direction of pendulum rotation and to select the shape of a weight attached to 
the last pendulum link. The underlying physical formulae based on the generalized 
inverted pendulum concept are implemented in form of a symbolic MATLAB 
function and a MATLAB GUI application. The validity and accuracy of motion 
equations generated by the application are demonstrated by evaluating the open-
loop responses of simulation models of the classical single and double inverted 
pendulum system using newly-developed MATLAB blocks and applications. 
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1 Introduction 

Stabilization of a physical pendulum or a system of interconnected pendulum 
links in the upright unstable position is a benchmark problem in nonlinear control 
theory [1]: in recent years, several types of stabilizing mechanisms such as cart 
moving on a rail [2], rotary arm [3] or vertical oscillating base have been intro-
duced. Inverted pendulum systems (IPSs) are therefore regularly employed as typ-
ical examples of unstable nonlinear underactuated systems in the process of veri-
fication of linear/nonlinear control strategies in corresponding control structures. 
Direct practical applications include walking humanoid robots, launching rockets, 
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earthquake-struck buildings and two-wheel vehicles such as the Segway PT. Prin-
ciples of modeling and control of IPSs can further be considered as the basic start-
ing point for the research of advanced underactuated systems such as mobile ro-
bots and manipulators [4] as well as aircraft and watercraft vehicles [5]. 

We focused our research on the mutual analogy among mathematical models of 
IPSs with a varying number of pendulum links. Consequently, we introduced the 
concept of a generalized n-link inverted pendulum system with n+1 degrees of 
freedom (DOFs) and a single actuator, which allows to treat an arbitrary IPS as a 
particular instance of the system of n pendula attached to a given stabilizing base. 
General procedures which determine the Euler-Lagrange equations of motion for 
a user-specified instance of a generalized classical (i.e. on a cart) and rotary IPS 
were developed and implemented via MATLAB’s Symbolic Math Toolbox [1]. 

 The design and implementation of the general procedures has so far been based 
on the assumption of interconnected pendulum rods whose angle is determined re-
lative to a fixed planar/spatial coordinate system and their center of gravity (CoG) 
is identical to their geometric center. The goal of this paper is to expand the exis-
ting procedures for automatic model generation of classical IPSs with further, 
practically motivated generalizations. The paper is organized as follows. Firstly, 
the generalized classical IPS which has been studied so far is presented, this time 
as the basic starting point for further research. Two categories of expansions are 
next described in terms of their impact on general mathematical model derivation: 
change in CoG position of a pendulum caused by a weight attached to its end and 
the option to specify the orientation of the pendulum reference position, together 
with the reference direction of pendulum rotation. The next section details the im-
plementation of an expanded general procedure whose aim is to ultimately cover 
all possible forms of models found in relevant literature by including all possible 
combinations of underlying assumptions for pendulum reference posi-
tion/direction and the existence of attached weights. Finally, the validity and accu-
racy of the procedure is verified using the classical single and double IPS, both 
represented by pre-prepared Simulink blocks encompassing all investigated fea-
tures, and the paper is concluded with an evaluation of achieved results. 

2 Expanded Generalized Classical Inverted Pendulum System  

The generalized system of classical inverted pendula was introduced in [1] as 
a set of 1n ≥  rigid, homogenous, isotropic rods (pendulum links) which are inter-
connected in joints and attached to a stable cart which enables movement along 
a single axis. A multi-body mechanical system defined this way is underactuated 
since it has fewer actuators than DOFs [4]: the only input (force F(t) acting upon 
the cart) actuates the cart position [m] as well as the n pendulum angles [rad]. 
Through the mathematical model derivation process in [1], it was assumed that all 
motion was bound to a planar coordinate system with the cart moving along the x-
axis, which was simultaneously identified with the projection of the zero potential 
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energy level into the xy-plane. The value of every pendulum angle was determined 
clockwise with respect to the vertical upright position of the pendulum, which was 
defined as parallel to the y-axis (Fig. 1). 

 

 

Fig. 1. Generalized system of classical inverted pendula – scheme and basic nomenclature 

According to the Lagrangian formulation of classical mechanics, every possible 
configuration of a multi-body system can be uniquely defined by a vector of gen-
eralized coordinates equivalent to the system’s DoFs which are, in the case of a 
generalized classical IPS, identified as cart position and pendulum angles: 
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For every generalized coordinate, a nonlinear second-order differential motion 
equation is specified by employing Euler-Lagrange equations defined in the form: 
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where L(t) is the difference between the multi-body system’s kinetic and potential 
energy, D(t) stands for the dissipation properties and Q*(t) is the vector of genera-
lized external inputs [6]. The process of mathematical model derivation for a se-
lected IPS hence transforms into a procedure to determine its kinetic, potential and 
dissipation energy, each defined as a sum of energies of the multi-body system’s 
individual bodies, i.e. the cart (i= 0) and all pendulum links (i=1,... n): 
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While the potential energy of i-th body depends on CoG position coordinates, 
CoG velocity components need to be obtained to specify kinetic energies or dissi-
pative properties [7]. The actual physical formulae which form the core of the pro-
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cedure for a generalized IPS were derived in [1] and presented together with gen-
erated motion equations of example IPSs and the verification of their validity. 

2.1 Modified Mass Distribution as a Result of Attached Weight 

As the first expansion to the generalized IPS, we considered a system with an 
arbitrary number of inverted pendulum links mounted on a cart, in which a weight 
with a specified shape is firmly attached to the end of the pendulum link further-
most from the cart. Therefore, for i=1,..., n-1, the whole mass of a pendulum rod is 
concentrated to the CoG located midway from the pivot point, but for i=n , the at-
tached weight causes the CoG of a pendulum link with weight to shift away from 
the geometric center of the homogenous rod. 

 

 

Fig. 2. Considered weight shapes: sphere, cylinder, ring 

By computing the distance between the CoG of the weighted pendulum link 
and the pivot point, CoG position and velocity coordinates followed by related 
potential and kinetic energies were derived and can be found in [8]. To fully ex-
press the kinetic energy, the moment of inertia of the weighted pendulum was cal-
culated as the sum of moments of inertia of the pendulum rod and the weight it-
self. Three shapes of weight – sphere, cylinder and ring (Fig. 2) were considered, 
however the algorithm can be applied to all symmetric isotropic bodies with 
known moments of inertia, since the resulting equations of motion only differ by 
the moment of inertia of the attached weight. 

2.2 Modified Pendulum Reference Position 

Most differences between the correctly derived inverted pendulum models fo-
und in various sources can be attributed to the initial choice of reference position 
for all pendulum links and the reference direction of pendulum rotation, both of 



5 

which determine the numeric value of the pendulum angle at every time instant. 
Our next goal was therefore to expand the procedure of mathematical model deri-
vation for generalized IPS so that all feasible combinations of initial assumptions 
would be covered. Eight possible combinations of reference pendulum positions 
with respect to a planar coordinate system (top, bottom, right, left) and pendulum 
movement directions (clockwise, counterclockwise) were considered (see Fig. 3 
for examples). During the derivation process, which was recorded step-by-step in 
[9], the selected combination of initial assumptions was shown to have direct 
influence on the coordinates of CoG position of each pendulum link and 
subsequently on the related CoG velocity components, on the expressions for ki-
netic and potential energy, and finally, on the motion equations in their final form. 

 

Fig. 3. Examples of reference frame definitions – a) bottom clockwise b) right counterclockwise 

3 Expanded General Procedure for Mathematical Model 
Derivation – Program Implementation and Application 

Using the familiar theoretical background as well as the newly-derived physical 
formulae, we completely reworked the earlier general algorithmic procedure so 
that it would yield a mathematical model of an arbitrary classical IPS with respect 
to user-selected criteria for attached weights and pendulum reference position. The 
procedure was once again implemented as a MATLAB function which generates 
the nonlinear equations of motion via Symbolic Math Toolbox in the simplified 
and rearranged form, equivalent to the most likely form obtained by manual deri-
vation. An application with graphical user interface, Inverted Pendula Model Equ-
ation Derivator_v2, was also developed to provide a user-friendly access to the 
function. Compared to the earlier version of the Derivator where the user could 
only select the number of pendulum links [10], four options for weight type (in-
cluding none) and eight for reference position/direction are now provided. As 
a further improvement, the equations can now be displayed in form of LaTeX ex-
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pressions in addition to the original MATLAB representation. Fig. 4 shows an 
example preview of the Derivator_v2 window which contains the generated model 
equations for the classical double IPS with an attached cylinder-shaped weight. 

 

Fig. 4. Inverted Pendula Model Equation Derivator – ver. 2 – GUI application for mathematical 
model generation for classical IPSs, „C“ is the CoG-to-pivot distance for the n-th pendulum link 

By evaluating the results of the implemented expanded general procedure, we 
concluded that the mathematical model of the original generalized classical IPS 
(i.e. without attached weight) represents a special case of a model of the weighted 
IPS in case the weight mass is set to zero, which serves as a confirmation of the 
procedure’s accuracy. Analogically, the original specification of a generalized 
IPS, characterized by a particular combination of initial assumptions about the re-
ference position and rotation of the pendulum, now becomes a representative of 
a family of models related to the same physical system with confirmed validity. 

3.1 Verification of Generated Mathematical Models of Classical 
Inverted Pendulum Systems 

A structured Simulink block library, Inverted Pendula Modeling and Control 
(IPMaC), has been developed since 2009 as a comprehensive software framework 
for the analysis and control of IPS in the simulation environment. To reflect the 
expansions outlined in previous sections, library blocks which implement the mo-
tion equations of the classical single and classical double IPS were equipped with 
newly-implemented properties. As a result, the subsystem mask of both blocks 
now allows the user to dynamically change the parameters of the simulation 
model, specify the number of input and output ports, the shape of attached weight, 
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reference pendulum angle value and reference direction of pendulum rotation. The 
possibility to switch to a simplified model, which neglects friction and omits the 
backward impact of the pendulum links on the cart, was also implemented. The 
necessity to create a separate block for each set of equations was eliminated by ca-
llbacks which ensure the dynamic adjustment of the block structure, so that it will 
always correspond to a specific set of motion equations.A GUI application, Analy-
sis of Inverted Pendulum Systems (AoIPS) was developed in MATLAB as 
a graphical tool to monitor, analyze and evaluate the open-loop dynamics of a 
selected classical IPS in a single window. For every simulation experiment, a 
scheme containing a suitable Simulink block is run in the background, block pa-
rameters are set to values specified in the GUI, and simulation results are exported 
into separate figures for further investigation. 

It will next be assessed whether the generated mathematical models of classical 
single and double IPSs can be considered as valid and accurate for control design 
purposes. Using the AoIPS tool, open-loop responses to an impulse signal constra-
ined in time/amplitude were obtained for both simulated models, starting from the 
initial upright equilibrium. Numeric parameters were specified in [8][9]. 
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Fig. 5. Classical single inverted pendulum system – cart position and pendulum angle in a com-
plete vs. simplified model  

Simulation experiments which illustrate the dynamics of simplified models of 
IPSs or analyze the influence of the pendulum’s modified mass distribution on the 
system dynamics were evaluated first. The comparison of time behavior of the cart 
position and pendulum angle for the complete and simplified model of a classical 
single IPS is depicted in Fig. 5, while the dynamics of the classical double IPS 
with different attached weights is evaluated in Fig. 6. In both cases, all pendulum 
links fall from the upright into the downward equilibrium through a damped oscil-
latory transient state and stabilize there, in compliance with the empirical observa-
tions of pendula behavior. In the simplified model, the pendulum makes a very 
long transition to the steady state as a result of neglected friction, and the cart tra-
jectory correctly shows no signs of the backward impact caused by the pendulum 
movement. If weight is attached to the upper pendulum, the pronounced "jerky" 
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cart movement is caused by the inertia of the heavier pendulum link. Total dam-
ping of a weighted system is much lower than that of the system with no weight 
load, which is reflected on larger oscillations of pendulum links and their prolon-
ged settling time. The differences between the dynamics of systems with different 
types of weights are minimal. 
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Fig. 6. Classical double inverted pendulum – cart position and pendula angles for different sha-
pes of weights, including no weight 

The following simulation experiments evaluate the influence of combinations 
of initial assumptions on the response of IPSs. Fig. 7 depicts the dynamical beha-
vior of a classical single IPS after selecting four starting positions which vary by 
90° (top, left, down, right), while the pendulum angle is determined clockwise in 
all cases. The effect of the direction in which the pendulum angle is determined 
(clockwise / counterclockwise) is shown on a classical double IPS in Fig. 8. It has 
been proven that the changes in initial assumptions have no effect on the dynamics 
of either the cart or the pendulum links, and only the graphical representation of 
pendulum behavior is subject to change. Choice of the reference value of the pen-
dulum angle determines the numeric value corresponding to the upright/downward 
position of the pendulum, and the selected reference direction defines whether the 
pendulum angle will increase or decrease during simulation, as it is clear from the 
„mirror image“ depicting the pendula behavior in Fig. 8. 
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Fig. 7. Classical single inverted pendulum system – cart position and pendulum angle – effect of 
the changing reference position of the pendulum – top, left, down, right 

Reasonable behavior of the open-loop responses of both simulation models 
means that under all criteria, systems described by the generated motion equations 
can be considered accurate enough to serve as a reliable testbed for the verifica-
tion of linear and nonlinear control algorithms. 
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Fig. 8. Classical double inverted pendulum system – cart position and pendulum angles determi-
ned in a clockwise / counterclockwise reference direction 

Conclusion 

The purpose of this paper was to expand and further generalize the existing al-
gorithmic procedure for obtaining the equations of motion of classical inverted 
pendulum systems (IPSs) with an arbitrary number of pendulum links. The expan-
ded general procedure covers all feasible combinations of initial assumptions for 
the pendulum reference position and direction of rotation, and considers various 
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shapes of weight load attached to the last pendulum link. A GUI application was 
developed to provide an intuitive interface to the MATLAB function which im-
plements the procedure. The validity of generated motion equations was confir-
med by evaluating open-loop responses of simulation models of classical single 
and double IPS with emphasis on the newly-introduced features. 

The results of this paper allow the control engineer to effortlessly obtain a hig-
hly accurate, error-free mathematical model of a selected IPS, simplifying the pro-
cess of model-based control design. Moreover, the readily available collection of 
mathematical and simulation models of IPSs can be regarded a testbed model ba-
sis for exploring properties of underactuated mechanical systems and consequen-
tly, as a starting point for research in mobile and manipulator robotics. 
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