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Abstract— The aim of this paper is control algorithm design 

for a robot arm nonlinear model using an exact input - output 
feedback linearization method. In this paper is given the 
nonlinear model of the robot arm with two degree of freedom, 
which is base of the simulation model, and also a detailed 
description of the exact input - output feedback linearization 
method. The proposed control algorithm together with simulation 
model of the robot arm are implemented into control structure 
with purpose to track reference trajectory.          
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I. INTRODUCTION 

The industrial robots have become a very important part of 
the manufacturing facilities in the various fields of industry. 
The robot arms are used for different kinds of welding, 
assembling, painting and other industrial applications. 
Therefore, the high level control is required for these 
applications, which provide the desired precision of the robot 
arm. Several approaches were used to control algorithm 
design for robot arms as robust control [2], or genetic 
algorithm for optimization of trajectory [3] and etc. 

In this paper will be presented application of the exact input 
- output feedback linearization method for control algorithm 
design for nonlinear simulation model of robot arm with two 
degree of freedom with purpose of control on steady states 
defined by a reference trajectory. The proposed control 
algorithm together with robot arm simulation model are 
implemented into control structure, which is then verified in 
the Matlab/Simulink program language.            

II.  EXACT INPUT-OUTPUT FEEDBACK LINEARIZATION 

METHOD FOR MIMO SYSTEM 

This part described the exact input - output feedback 
linearization method for nonlinear dynamic MIMO of n - 
order with m - number of inputs and outputs. The basic 
condition for using exact linearization method is nonlinear 
MIMO system described in the affine form   
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mi ..1=   -  ith  inputs  
mj ..1=   -  jth outputs 

where nRtx ∈)(  is state vector, ui(t) is control input, yj(t) is 

system output,  f(x,t), gi(x,t) a hj(x,t) are smooth nonlinear 
functions. For better overview, further will not write 
dependence of variables on the time t.  
The essence of the exact input - output feedback linearization 
method is in finding a input transformation in the shape   

iiii vxxu )()( βα +=  (2) 

where vi is new input, αi(x), βi(x) are nonlinear functions, and 
in defining a state transformation zi in the shape  

)(ˆ xTz ii = . (3) 

The linear relationship is then created among outputs yj and 
the new inputs vi, and the interactions are removed between 
original inputs and outputs. That is advantage of this method, 
which allows to design control algorithm for each subsystems 
with input vi and output yj and independent of each other by 
synthesis methods for SISO systems [1].  
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Figure 1 Control structure using exact linearization method 

 
Principle of the exact input - output method feedback 

linearization method is based on repeatedly derivative of 
output yj  until input signals appear in the expression of 
derivation. The Lie derivatives are used for the calculation of 
individual derivatives of outputs, which are marked as Lfh and 
Lgh. The first derivative has the form 

∑
=

+=
m

i
ijgjfj uxhLxhLy

i

1

)()(&  (4) 

where: 

)()( xf
x

h
xhL

j
jf ∂

∂
=  , )()( xg

x

h
xhL i

j
jg i ∂

∂
=  

If expression 0)( =xhL jg i
 for all i, then the inputs have not 

appeared in the derivation and is necessary continues 
derivative of the output yj. Precondition, the number r j 
represents number of derivatives, that is needed, that at least 

one input has appeared in the derivation jr
jy  i.e. 

0)(
1 ≠−

xhLL j
r
fg
j

i
 at least for one i, then the resulting 

derivation has shape 
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This approach must be done for each output yj. When the 
derivation is finished, the result are m equations, which can be 
written in the form   
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where E(x) is m x m matrix of shape 
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If matrix E(x) is regular, then it is possible to define the input 
transformation in the shape  
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and state transformation 
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After determination of input transformation (8) and state 
transformation (9) can be transformed nonlinear system (1) 
into linear form  
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where I j are unit matrix of the size r j x r j. The linear control 
algorithm is necessary to propose feedback control law for 
linear system (10) by linear method of synthesis, to ensure the 
desired behavior of the nonlinear system (Fig.1). 
The relative order r j exist for each subsystem in the exact 
input - output feedback linearization method, the resulting 
relative order is then defined by the sum of them such as            

mrrrr +++= ...21  (11) 

This part described the exact input - output feedback 
linearization method for the case when relative order r is 
equals to system order n.[1]   

III.  SECOND-ORDER DYNAMIC MODEL OF ROBOT ARM 

The robot arm model with two degrees of freedom (2DOF) 
is nonlinear MIMO system with two inputs (voltages for DC 
motors) and with two outputs (angular position of individual 
joint) (Fig. 2). The model is divided into two subsystems, DC 
motors subsystem, which consists two DC motors, that convert 
the input voltage uj to corresponding motor torque τj, and 
Robot arm subsystem, which simulates the movement of robot 
arm joints (Fig.3).  
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Figure 2 Model of robot arm - subsystems 

 

The mathematical model of DC motors subsystem 
composed of two DC motors, which are described by 
differential equation of the shape [2]   
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2,1=j  

where physical variables and parameters are:  
i j    - armature current of motor 
 uj    - input voltage of motor 

jq&    - angular position of rotor 

 Rj   - resistance of armature of motor 
 Lj    - inductance  of armature of motor 

jbK          - EMF constant  

The motor output torque is then given    

jtj iK
j

=τ        2,1=j  (13) 

where τj is motor output torque of jth joint of robot arm and 

jtK  is torque constant of jth  motor. In the further, it is 

assumed, 
jj tb KK =  for both joints of the robot arm.   

The general description of the dynamic of the robot arm 
with k - degree of freedom can be given by motion equation of 
the shape [4]  

uqqHqqM =+ ),()( &&&  (14) 

where: 
 q    - angular position vector [k x 1] 
q&     - angular velocity vector [k x 1] 

q&&     - angular acceleration vector [k x 1] 

 M(q)  - matrix of inertia [k x k] 
 ),( qqH &  - vector of damping, coriolis, centrifugal     

     and gravitational force [k x 1]  
 u    - input torques vector [k x 1]. 
In the case 2DOF robot arm (Fig 3), which includes a Robot 
arm subsystem, can be the dynamic of the arm described 
follows   
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where τ1, τ2 are DC motors torque, q1 and q2 are angular 
position of individual joints. The matrix of inertia M(q) and 

),( qqH &  vector are in the shape  
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where: 
 m1,m2  - mass of arms 
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 l1,l2   - length of arms  
 Kq1,Kq2 - damping constants. 
It is assumed that the total mass of the actual arm  is 
concentrated at the end of each of them, as shows on the Fig.3.   
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Figure 3 2DOF robot arm 

 

Based on equations (12) to (17) was programmed 
simulation model of the nonlinear dynamic model 2DOF robot 
arm using the S - function block in the Matlab/Simulink 
language. The simulation model includes physical constraints 
and limits of the real model. The analysis of the simulation 
model was carried in open loop at defined input voltages u1 
and u2 (Fig.4).  
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Figure 4 Analysis of 2DOF robot arm simulation model - input 
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Figure 5 Analysis of 2DOF robot arm simulation model - output 

 

The resulting graph of analysis (Fig.5) shows the possibility of 
further use of 2DOF robot arm simulation model in the control 
structure at the testing of the control algorithm using exact 
input - output feedback linearization method.  

IV.  DESIGN OF NONLINEAR CONTROL ALFORITHM 

The nonlinear dynamic model of the 2DOF robot arm was 
given in the previous part. This model is described by 
equations, which contain in itself a smooth nonlinear 
functions, the main assumption for the use of exact input - 
output feedback linearization method for the control algorithm 
design, which will deal in this part. The whole process of the 
control algorithm design is described in the following steps. 

1. step - rewrite of the nonlinear model of the 2DOF robot 

arm to affine form (1). 
By defining the state vector 

),,,,,(),,,,,( 222111654321 iqqiqqxxxxxxx &&== , system 

input ),( 21 uuu =  and system output ),( 21 qqy = , then the 

affine form of the 2DOF robot arm nonlinear model has  
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where  
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2. step - calculation of the Lie derivatives for individual 
outputs. 

The program module has been programmed for this 
calculation in Matlab language using symbolic toolbox, that 
generated the individual derivatives for outputs y1 and y2. 
After calculation, the result are matrix of the Lfh(x) derivatives 
and  E(x) matrix in the shape     
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After determining, that E(x) matrix is regular, it was possible 
to define the input transformation  
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and state transformation 
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3. step - transformation of the nonlinear system (18) to 
linear form (10) and linear control law. 

The linear control law was proposed for to ensure the 
desired behavior of the nonlinear model (18) using pole 
placement with integrator method in the shape  
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where: 
z1-3,z4-6   - state vectors  
 yref1, yref2  - reference trajectories 
 y1,y2   - model outputs 
K1-3,K4-6  - vectors of gains for individual states 
Ki1,Ki2   - vectors of gains for integrator outputs 
 
Therefore, it was necessary to extend the state description of 
the linear form (10) into following form  
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4. step - implementation of the proposed control algorithm 
and his testing in the control structure. 

The resulting input transformation (21) and state 
transformation (22) together with linear control law (23) are 
implemented into programmed simulation scheme for control 
of the 2DOF robot arm nonlinear model (Fig.6) 
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Figure  6 Simulation scheme for control 2DOF robot arm nonlinaer model 

using exact input - output feedback linearization method 
 

The resulting graph of tracking refrence trajectory, which is 
represented the step change between steady state, when using 
proposed control algorithm with using  exact input - output 
feedback linearization method is on the Fig.7. 
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Figure  7 2DOF robot arm nonlinear mode response to track reference 

trajectory 

V. CONCLUSION 

This paper presented the control algorithm design for 
nonlinear simulation model of the 2DOF robot arm using the 
exact input - output feedback linearization method and pole 
placement with integrator method. The proposed control 
algorithm together with simulation model, which includes 
physical constraints and limits of the real model, was 
implemented into control structure and was verified in 
Matlab/Simulink program language. The resulting graph 
shows, that output of the model tracks step change of the 
reference trajectory and therefore can be considered, this 
approach is suitable for solution problem of control for 2DOF 
robot arm. The obtained knowledge from field of control 
algorithm design for MIMO systems using methods of 
nonlinear synthesis and also the proposed program module 
will be part of my dissertation work named Design of 
Effective Software Tools for Control and Analysis of 
Nonlinear Systems  
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