
SCYR 2012 - 12th Scientific Conference of Young Researchers – FEI TU of Košice

Remote control of Mitsubishi industrial robot
1Peter PAPCUN (1st year), 2Matej ČOPÍK (2nd year)

Supervisor: 3Ján JADLOVSKÝ

1, 2, 3Dept. of Cybernetics and Artificial Intelligence, FEI TU of Košice, Slovak Republic

1peter.papcun@tuke.sk, 2matej.copik@tuke.sk, 3jan.jadlovsky@tuke.sk

Abstract — This article discuss about remote control of

industrial robotic arm Mitsubishi MELFA RV-2SDB. We are
going to control this robot through smart phone with Android
operating system. Our system has ability to control robot's
endpoint in Cartesian system axes, or control it's joints. Smart
phone is used as a joystick, and also it can be used to make or
run recorded sequences.

Keywords — Industrial robot, Robot, Mitsubishi, Control,
Bluetooth , Wi-Fi, Android, Smart phone.

I. INTRODUCTION

Under the phrase remote control is meant wireless control
through Bluetooth, or Wi-Fi. In this document we write about
network connections between nodes and methods of their
communication. We describe all applications used in our
robot control. Our control architecture consists of five
network nodes (personal computer, Wi-Fi router, robot
controller, robot, Smart phone) and three applications.
Finally, we will evaluate remote control advantages

II. DISTRIBUTION OF SYSTEM

Distributed control system (DCS) is a control system,
usually production system, process or any dynamic system in
which the system elements are not placed centrally but they
are distributed, divided into smaller parts, subsystems that are
controlled by one or more control devices. Current industrial
information and control systems utilize mainly hierarchic
(pyramidal) architectures containing physical and logical
distribution elements, integration as a whole, open and
scalable. Intelligent features have been applied on a large
scale recently whereby direct hierarchic relations are turned
into network relations. Emergent trends have also started to
appear to a great degree, i.e. merging of originally
independent systems, which can result in their new features
generation as a whole. [4]

You can see hierarchic architecture of described system on
Fig. 1. This architecture does not include all levels of DCS.
You can read [4] for more information about DCS. This
system pertain a program distribution. Program distribution
divides control software to more control units. Software is
distributed into robot controller, personal computer and smart
phone. Each of them plays specific role in this system.

Fig. 1: Hierarchic architecture of described system.

III. HARDWARE AND NETWORK CONECTIVITY

Diploma thesis [1] present control of robot integrated in
flexible assembly company. This control system is also
divided into three applications. The first application
recognizes images. It operates on personal computer (PC).
The second program controls whole production of flexible
assembly company. Application operates on programmable
logic controller (PLC). The third application controls
industrial robot and operates on robot controller (RC). In this
article we devote robot separately (robot is not integrated into
flexible assembly company here).

We will describe used hardware and network connectivity
in this part of document. Robot is connected to RC with
machine cables. RC is connected to Wi-Fi router through
Ethernet cable. PC uses same router as well. You can see a
network connection structure of all hardware parts in Fig. 2.

You can find a more accurate description of robot and RC
in [1], [2]. PC has Bluetooth device. In PC is installed
operating system (OS) Windows 7. Smart phone (SP) have
Bluetooth and Wi-Fi devices integrated with OS Android.

Robot is programmed by integrated development
environment RT Toolbox 2 with programming language
MELFA V (MELFA IV can be also used). RT ToolBox 2
communicates with RC through USB, TCP/IP, or RS – 232
interfaces. We use TCP/IP interface, in this case. Earlier we
connected to RC by USB interface, because we had to change
default robot IP address to static network address. Then we
disconnect USB and we tried to connect TCP/IP (Ethernet
cable). Connection was successful. PC already belongs to
network. We configured Wi-Fi router, so that other devices
can connect to it using Wi-Fi.

212

SCYR 2012 - 12th Scientific Conference of Young Researchers – FEI TU of Košice

Fig. 2: Network connectivity.

IV. SOFTWARE

Robot control consists of 3 separate applications:
 Program in RC,
 Program in PC,
 Program in SP.

Program in RC
The simplest algorithm is applied in RC:
Open "ENET:192.168.0.2" As #1
Mxt 1,1,50
Hlt
End.

Command MXT is one of loop commands. This command

is specific. It is expecting User Datagram Protocol (UPD)
packet from specific IP address. You can see three MXT
arguments. The first argument is communication channel
number. The second argument is position data type (Cartesian
system, joint, motor pulse). The last argument is filter time
constant. Flowchart for previous algorithm looks is on Fig. 3.

Fig. 3: RC flowchart.

Data of UDP packet (without Ethernet, IP, UDP headers
and Ethernet Trailer) consists for example of: command,

transmission and reply data type designation, position data,
timeout time counter value, etc. Structure of UDP packet (its
data part) is determined by Mitsubishi. When RC receive
UDP packet, robot will move accordingly to packet
instruction. In other words, an MXT is command for real time
control of robot.

PC application

We used C# programming language. The following figure
(Fig. 4.) shows the high level app diagram:

Fig. 4: Program diagram.

Main and basic application module is Host. You can load

plug-in modules to host. IO, BT and WiFi are plug-in
modules. Plug-ins implements custom plug-in interface in
order to be “plugged into” host module.

The main task of Host is to maintain plug-ins in memory
and inform them about events, which user invokes in main
application (language change, request plug-in information,
etc.). Another task of Host is switching between displayed
plug-ins, as required by user. When user has switched
between plug-ins, instances of plug-ins run in background and
their functionality is not compromised in any way.
 IO is next plug-in module. Its task is communication with
robot. The IO module obtains information about robot (arm
position, joint rotation, etc.) and this information is passed
over through host to special global class. This class maintains
current information about robot. Main task is to execute
orders from command queue (type FIFO – first in first out)
which is also part of global class. Other plug-ins write
command to command queue and IO takes care of sending
and performing those commands in robot.
 Plug-ins BT and WiFi communicate between SP and plug-
in IO. BT communicates with Bluetooth interface. We are
using standard communication protocol RFCOMM. WiFi
communicates through TCP/IP interface. We are using UDP
in WiFi. This plug-ins behaves as server, which are waiting
for client to connect through Bluetooth interface or WiFi.
Application obtains connection information about remote
client, after accepting connection. Then communication is
running between SP and PC. You can control robot directly.
Robot coordinates are sent to SP (by IO plug-in) and SP is

213

SCYR 2012 - 12th Scientific Conference of Young Researchers – FEI TU of Košice

sending new coordinates. You can record and activate
command sequence from SP also. Mobile phone sends
command for sequence to module BT or WiFi. Or you can
teach new sequences. By mobile you confirm some points,
these points are saved to file in computer and then you can
activate those new sequences from file.

Fig. 5: PC application.

Application in SP

App is programmed in Java programming language using
integrated development environment (IDE) Eclipse Galileo
3.5.2. Our app is then sent to SP through this IDE. You can
see basic and the first screen of application on figure (Fig. 6).

Fig. 6: Basic screen of program in SP.

RobotControl Activity (Fig. 7) is main activity. User can
receive information from PC about robot position through this
activity. User can define every coordinate independently. He
can choose position data type (Cartesian system, joint, motor
pulse), which he sends to PC. PC (module IO) sends this
information to RC. Manual control is next option of by arrow
buttons (Fig. 7).

Fig. 7: RobotControl Activit (SP screen).

User activates sequences from next part of app. List of

sequences is on screen called with same name. Those
sequences are saved in PC (in files). User has option to teach
robot new sequences, with other part of application. User
confirms some points (in Cartesian system), this points are
saved to file in computer. Then users can active new sequence
through Sequences activity.

V. CONCLUSION

We tried this type of control. Every part of applications are
working. SP replace Teaching pendant, but not completely.
Because user can program robot with Teaching pendant.

With SP we can:

 control robot with arrow buttons,
 send robot to a chosen coordinate,
 rotate joints to a chosen axis,
 active sequences,
 teach robot new sequences.

With SP we can not:

 program robot,
 teach robot a sequences with define type of

movement.
 set RC parameters.

We can program application, which can do mentioned
things (without set RC parameters). Purpose was not to create
remote Teaching pendant in SP. We are only trying option of
controlling robot in C# with real time control (command
MXT in RC). For example one of diploma thesis in this year
(in our department) is about real time control of robot through
cameras system with infra sensor. You can control robot with
your body movement in application of this diploma thesis.

214

SCYR 2012 - 12th Scientific Conference of Young Researchers – FEI TU of Košice

ACKNOWLEDGMENT

This work is the result of the project implementation:
Development of the Center of Information and
Communication Technologies for Knowledge Systems (ITMS
project code: 26220120030) supported by the Research &
Development Operational Program funded by the ERDF.

This work has been supported by the Scientific Grant
Agency of Slovak Republic under project Vega No.1/0286/11
Dynamic Hybrid Architectures of the Multiagent Network
Control Systems.

REFERENCES
[1] PAPCUN, P. 2011. Control of robot integrated in flexible production

line, diploma thesis, Košice, Slovakia, 2011.
[2] Instruction manual, CRnQ/CRnD Controller, Mitsunishi Electric,

Ratingen, Germany, 2010.
[3] Product leaflets, RV-2SDB, Mitsubishi Electric, Ratingen, Germany,

2010.
[4] JADLOVSKÝ, J. – LACIŇÁK S. – CHOVAŇÁK J. - ILKOVIČ J.

2010. Proposal for distributed control system of flexible production line,
Journal of Cybernetics and Informatics, vol. 11, Košice, Slovakia, ISSN:
1336-4774

[5] ILKOVIČ, J. – ČOPÍK, M. – JADLOVSKÝ, J. – LACIŇÁK, S. 2011.
Technological level of flexible manufacturing system control, Acta
Electrotechnica et Informatica, vol. 11, no. 1, pages 20 – 24, Košice,
Slovakia, ISSN: 1338-3957

[6] ILKOVIČ, J. – ČOPÍK, M. 2011. The assembly line model at
Department of Cybernetics and Artificial Intelligence, SCYR 2011: 11th
Scientific Conference of Young Researchers of Faculty of Electrical
Engineering and Informatics Technical University of Košice: proc. -
Košice : FEI TU, 2011, pages 373-376, Košice, Slovakia, ISBN 978-80-
553-0644-5

215

