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MODELLING OF CLASSICAL AND ROTARY INVERTED
PENDULUM SYSTEMS – A GENERALIZED APPROACH

Slávka Jadlovská – Ján Sarnovský
∗

The purpose of this paper is to present the design and program implementation of a general procedure which yields
the mathematical model for a classical or rotary inverted pendulum system with an arbitrary number of pendulum links.
Lagrange equations of the second kind with an integrated Rayleigh dissipation function are employed in model design, and
the energetic balance relations, derived for the base and all pendulum links in a generalized (n-link) classical and rotary
inverted pendulum system, are implemented in form of symbolic MATLAB functions and a MATLAB GUI application.
The validity and accuracy of motion equations generated by the application are demonstrated by evaluating the open-loop
responses of simulation models of classical double and rotary single inverted pendulum.

K e y w o r d s: inverted pendulum systems, automated mathematical modelling, Lagrange mechanics, symbolic MATLAB
functions, classical double inverted pendulum, rotary single inverted pendulum

1 INTRODUCTION

Inverted pendulum systems represent a significant
class of nonlinear underactuated mechanical systems
which exhibit numerous problems present in industrial
applications, such as a variety of external disturbances
or nonlinear behaviors under different operation condi-
tions [1], and have therefore assumed a prominent po-
sition among the test-bed systems for verification and
practice of ideas emerging in control theory and robotics.
Stabilization of a pendulum rod in the unstable upright
position is considered a benchmark control problem which
has been solved by attaching the pendulum to a base that
moves in a controlled linear manner (classical inverted
pendulum systems) or in a rotary manner in a horizontal
plane (rotary inverted pendulum systems) [2–4].

In order to understand, predict, simulate, or control
a physical system, a mathematical model of the system
is generally required, usually in form of differential equa-
tions of motion [5]. It is only through complex mathe-
matical and physical analysis that we can obtain motion
equations which model the real system dynamics with
sufficient accuracy [6]. For various examples of inverted
pendulum systems, this analysis has been done ever since
the system was introduced to feedback control commu-
nity and the derived equations of motion are included
in corresponding sources. Systems with a different num-
ber of pendulum links are standardly treated as indepen-
dent units (eg [7] provides the motion equations for a sin-
gle, double and triple pendulum system, derived indepen-
dently of each other), which only permits the laborious
and error-prone manual model derivation

For our research, we decided to focus on the obvious
mutual analogy of the systems, which led to an impor-
tant consequence: if a system of inverted pendula is ap-

proached as an instance of a generalized system of in-
verted pendula (ie a system with n pendulum links), the
respective steps of mathematical model derivation can be
processed into an algorithm and implemented via sym-
bolic software tools. The final result of this technique is
a systematic means for generating the equations of mo-
tion, which provides a number of advantages over man-
ual mathematical modelling we obtain a particularly pre-
cise approximation of the real system’s dynamics and any
factual or numeric errors which could arise during man-
ual modelling are eliminated. Moreover, generalizations
of this kind can be further extended to control algorithm
design, and applied in real-time control of laboratory sys-
tems.

The goal of this paper is to enable automatic model
generation for inverted pendulum systems by designing a
general procedure which determines the motion equations
for a system with an arbitrary number of pendula. The
paper is organized as follows. Section 2 presents the re-
spective steps of mathematical model derivation for gen-
eralized classical and rotary inverted pendulum systems,
which form the core of the general procedure. Section 3
provides details of the program implementation of the
procedure and proceeds to demonstrate its validity and
accuracy using two example systems: classical double and
rotary single inverted pendulum. In both cases, the sim-
ulation setup is built out of suitable function blocks from
the Inverted Pendula Modeling and Control (IPMaC), a
structured Simulink block library which was developed
by the authors of this paper and provides complex soft-
ware support for the analysis and control of classical and
rotary inverted pendulum systems [2]. Finally, Section 4
concludes the paper with an evaluation of achieved results
and some final remarks.
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2 MATHEMATICAL MODELLING

OF GENERALIZED INVERTED

PENDULUM SYSTEMS

In this section, we will analyze the generalized (n-link)
classical and rotary inverted pendulum system using the
Lagrangian formulation of mechanics [5]. This approach
was chosen for several reasons: it is by definition suitable
for generalizations, provides a more direct and less error-
prone model design than eg force summation based on
Newtons 2nd law; and the implementation of the method
is straightforward with aid of symbolic software tools [8].

2.1 Basic Preliminaries, Main Concepts and

Definitions

Let us define the generalized system of classical in-
verted pendula as a set of n ≥ 1 rigid, homogenous,
isothropic rods (pendulum rods or links) which are inter-
connected in joints and attached to a stable mechanism
which allows for movement alongside a single axis (often
referred to as a cart, moving carriage or wagon). Analog-
ically, the generalized system of rotary inverted pendula
is composed of n ≥ 1 interconnected homogenous rods
mounted on a rigid arm which rotates in a horizontal
plane, perpendicular to the pendula [2]. In both cases,
the system is underactuated because the number of actu-
ators is lower than the number of system links: the only
input (the force F (t) acting upon the cart or the torque
M(t) applied on the rotary arm) is used to control the
n+ 1 outputs of the system: cart position (in meters) or
arm angle (in radians) and pendula angles (in radians)
[3, 4].

Every system of n inverted pendula is a multi-body
composed of the base and the individual pendula, and
thus has n + 1 degrees of freedom. Any possible config-
uration of such a system can be uniquely defined by the
following vector of generalized coordinates

θ(t) = ( θ0 θ1 . . . θn )
⊤ (1)

where θ0(t) represents the position of the base (cart po-
sition for the system of classical inverted pendula, or arm
angle for the system of rotary inverted pendula) and θ1(t)
to θn(t) stand for the angles of pendulum links.

According to the principle of virtual work , which was
developed by Lagrange in 1788 and allows the transition
from Newtonian to Lagrangian mechanics, a mechanical
system is balanced if and only if the net virtual work
δW (t) due to all generalized forces is zero [5]

δW (t) = Q⊤(t)δθ(t) = 0 . (2)

where Q(t) is a vector of generalized forces and δθ(t) is
a vector of virtual displacements along the corresponding
generalized coordinates.

From the principle of virtual work, Euler-Lagrange
equations of second kind can be determined, one for each
generalized coordinate (ie degree of freedom of the sys-
tem). The condensed vector form of the equations is [8]

d

dt

(∂L(t)

∂θ̇(t)

)

−
∂L(t)

∂θ(t)
+

∂D(t)

∂θ̇(t)
= Q

∗(t) (3)

where the Lagrange function (Lagrangian) L(t) is defined
as the difference between the kinetic EK and potential
energy EP of the system

L(t) = EK

(

θ(t), ˙θ(t)
)

−Ep

(

θ(t)
)

, (4)

the Rayleigh (dissipation) function D(t) describes the
viscous friction (dissipative properties)

D(t) = D
(

θ̇(t)
)

, (5)

and Q∗(t) is the vector of generalized external inputs
applied on the system.

Only the dynamical behavior of the base is directly
affected by the external input. The vector of generalized
non-conservative external inputs is therefore defined as

Q
∗ = (X(t) 0 . . . 0 )

⊤
(6)

where X(t) represents either the force F (t) applied on
the cart, or the torque M(t) applied on the rotary arm.

To be able to determine L(t) and D(t), the total
energy of a multi-body system must be specified as the
sum of energies that correspond to the individual bodies
it contains. Any system of n inverted pendula is therefore
characterized by relations

nEk(t) =
n
∑

i=0

Eki(t) ,
nEp(t) =

n
∑

i=0

Epi(t) ,

nD(t) =

n
∑

i=0

Di(t)

(7)

where EKi(t), EPi(t) and Di(t) respectively stand for
the kinetic and potential energies, and the dissipative
properties of each body. The process of derivation of mo-
tion equations that describe a selected system of inverted
pendula has thus transformed into the determination of
kinetic, potential and dissipation energies which relate to
the base and all pendulum links and need to be expressed
through the generalized coordinates.

In the following sections, we will derive the required
physical relations and formulae that describe the ener-
getic balances of the base and i -th pendulum in a sys-
tem of n inverted pendula. Both classical and rotary in-
verted pendulum systems will be dealt with. Indexing of
all model parameters will obey the convention set by (1),
where index 0 is assigned to the base and 1 to n rep-
resent the individual pendulum links, starting with the
link which is attached directly to the base. The nomen-
clature of numerical model parameters will therefore be
as follows

sxi(t), syi(t), szi(t) – position (displacement) coordinates,

vxi(t), vyi(t), vzi(t) – velocities in the directions of the
axes,

mi (kg) – mass of the base (i = 0) and the pendula (i = 1
to i = n),

li (m) – length of the arm (i = 0) or the i -th pendulum
(i = 1 to i = n),

g (ms−2) – acceleration due to gravity (g = 9.81ms−2

will be used),

δi (kgs
−1)/(kgm2s−1) – friction coefficient of the base

against the surface (i = 0)/damping constant related
to the pivot point of i -th pendulum (i = 1 to i = n).
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2.2 Generalized System Of Classical Inverted

Pendula

The definition of a generalized classical inverted pen-
dulum system will now be expanded. Throughout the
derivation process, let us assume that (Fig. 1):

Q
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l1 q1
J1q0
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mng

Jn

qnln

x

y

Fig. 1. System of n classical inverted pendula - scheme and basic
nomenclature

(1) the modelling takes place in a planary (two-dimen-
sional) coordinate system, ie all motion is bound to
the xy -plane with the cart moving along a line iden-
tical to the x-axis, which simultaneously represents
the projection of the zero potential energy level into
the xy -plane;

(2) the value of every pendulum angle is determined
clockwise from the vertical upright position, which
is parallel to the y -axis;

(3) the only input of the system is the force applied on
the cart in the direction parallel to the x-axis and to
the cart itself.

E n e r g e t i c b a l a n c e o f t h e c a r t

Since the cart is assumed to be moving in a linear
manner, we can provide its mathematical description us-
ing a single spatial dimension. If we identify it with the
x-axis, the only position coordinate will be denoted as
sx0(t) = θ0(t), which means (see assumptions) that the
potential energy of the cart

EP0(t) = 0 . (8)

The kinetic energy and the dissipation function both de-

pend on the cart velocity vx0(t) = θ̇0(t)

EK0(t) =
1

2
m0v

2

x0(t) =
1

2
m0θ̇

2

0
(t) , (9)

D0(t) =
1

2
δ0v

2

x0(t) =
1

2
δ0θ̇

2

0
(t) . (10)

E n e r g e t i c b a l a n c e o f t h e i -t h

p e n d u l u m

Let us suppose that the whole mass of a pendulum
rod is concentrated in its center of gravity (CoG) which

is identical to the geometrical center of the rod in the

distance of li/2 from the pivot point. The coordinates of

the CoG of i -th pendulum rod are therefore expressed as
(Fig. 1)

(

sxi(t)
syi(t)

)

=

(

θ0(t) +
∑i

k=1
lk sin θk(t)−

li
2
sin θi(t)

∑i

k=1
lk cos θk(t)−

li
2
cos θi(t)

)

(11)

and the velocity components in the directions of the axes

equal

(

vxi(t)
vyi(t)

)

=
d

dt

(

sxi(t)
syi(t)

)

=

(

θ̇0(t) +
∑n

k=1
lkθ̇k(t) cos θk(t)−

li
2
θ̇i(t) cos θi(t)

−
∑i

k=1
lkθ̇k(t) sin θk(t) +

li
2
θ̇i(t) sin θi(t)

)

.
(12)

The potential energy of the i -th pendulum is determined

by the height of its CoG above the x-axis

EPi(t) = migsyi(t) = mig
(

i
∑

k=1

lk cos θk(t)−
li
2
cos θi(t)

)

(13)

and the kinetic energy of each pendulum is given as a

sum of two components that describe the pendulum’s

translational and rotary motion, [9]

EKi(t) =
1

2
miv

2

i (t) +
1

2
JTiθ̇

2

i (t) (14)

where Jn = miL
2

i /12 represents the pendulum’s moment

of inertia with respect to the CoG and

vi(t) =
√

v2xi(t) + v2yi(t) (15)

is the magnitude of the pendulum’s translational velocity.

The dissipative properties of the i -th pendulum are
quadratically dependent on the angular velocities of pen-

dulum links marked as i and i− 1

Di(t) =
1

2
δi
(

θ̇i(t)− θ̇i−1(t)
)2

(16)

and

Di(t) =
1

2
δiθ̇

2

i (t) (17)

for n = 1 (single inverted pendulum system).
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Fig. 2. System of n rotary inverted pendula - scheme and basic
nomenclature

2.3 Generalized System of Rotary Inverted Pen-

dula

To expand the definition of the generalized rotary in-
verted pendulum system (Fig. 2), the following was as-
sumed:

(1) all modelling is bound to a standard right-handed
three-dimensional (Cartesian) coordinate system; the
arm rotates in a horizontal (parallel to xy ) plane
which is identical to the zero potential energy level;

(2) the rotary motion of each pendulum takes place in
a vertical plane that is always perpendicular to both
the horizontal arm plane and the arm itself; both the
upright and downward (hanging) position are parallel
with the z -axis and the value of every pendulum an-
gle is determined clockwise from the upright position;

(3) the input which actuates the system is the torque
applied on the rotary arm.

The balance relations for rotary inverted pendulum
systems are analogical in many aspects with the relations
(8–17), derived in the previous section for classical in-
verted pendulum systems.

E n e r g e t i c b a l a n c e o f t h e r o t a r y a r m

It was assumed at the beginning that the potential
energy of the rotary plane, and hence of the arm, would
be zero

EP0(t) = 0 . (18)

Two spatial coordinates are therefore sufficient to pro-
vide a complete description of the arm dynamics. The
coordinates of the arm’s CoG are specified as (Fig. 2)

(

sx0(t)
sy0(t)

)

=
l0
2

(

sin θ0(t)
cos θ0(t)

)

(19)

and the velocities in the directions of the axes respectively
equal

(

vx0(t)
vy0(t)

)

=
l0 ˙θ(t)

0

2

(

cos θ0(t)
− sin θ0(t)

)

(20)

The kinetic energy of the arm consists of a translational
and a rotary component

EK0(t) =
1

2
m0v

2

0
(t) +

1

2
JT0θ̇

2

0
(t) (21)

where JT0 = m0l
2

0
/12 is the arm’s moment of inertia

with respect to the center of gravity, and the arm’s trans-
lational velocity has the magnitude of

v0(t) =
√

v2x0(t) + v2y0(t) . (22)

Inserting (20) into (22) and then into (21) yields

EK0(t) =
1

2
J0θ̇

2

0
(t) (23)

where J0 = m0l
2

0
/3 is the moment of inertia with respect

to the rotary axis.

Finally, the dissipative properties of the arm are given
as

D0(t) =
1

2
δ0θ̇

2

0
(t) . (24)

E n e r g e t i c b a l a n c e o f i -t h p e n d u l u m

Assuming that every pendulum rotates in a vertical
plane, the coordinates of the CoG for the i -th pendulum
are




sxi(t)
syi(t)
szi(t)



 =



















l0 sin θ0(t) +

(

i
∑

k=1

lk sin θk(t)−
li
2
sin θi(t)

)

cos θ0(t)

l0 cos θ0(t)−

(

i
∑

k=1

lk sin θk(t)−
li
2
sin θi(t)

)

sin θ0(t)

i
∑

k=1

lk cos θk(t)−
li
2
cos θi(t)



















(25)

and the velocity components of the pendulum CoG in
the directions of the x, y and z axes become




vxi(t)
vyi(t)
vzi(t)



 =
d

dt





sxi(t)
syi(t)
szi(t)



 =





















































l0θ̇0(t) cos θ0(t) +
i
∑

k=1

lkθ̇k(t) cos θk(t) cos θ0(t)

−

i
∑

k=1

lkθ̇0(t) sin θk(t) sin θ0(t)−
li
2
θ̇i(t) cos θi(t) cos θ0(t)

+ li
2
θ̇0(t) sin θi(t) sin θ0(t)

−l0θ̇0(t) sin θ0(t)−
i
∑

k=1

lkθ̇k(t) cos θk(t) sin θ0(t)

−

i
∑

k=1

lkθ̇0(t) sin θk(t) cos θ0(t) +
li
2
θ̇i(t) cos θi(t) sin θ0(t)

+ li
2
θ̇0(t) sin θi(t) cos θ0(t)

−

n
∑

k=1

lkθ̇k(t) sin θk(t) +
li
2
θ̇i(t) sin θi(t)





















































(26)
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The potential energy of the i -th pendulum is deter-
mined by the height of the pendulum CoG above the
rotational plane of the arm

EPi(t) = migszi(t) = mig
(

i
∑

k=1

lk cos θk(t)−
li
2
cos θi(t)

)

(27)
and the kinetic energy of the i -th pendulum is once again
determined as a sum of a translational and rotary compo-
nent (14). While the pendulum’s moment of inertia with

respect to the CoG remains equal to JTi = mil
2

i /12 , the
translational velocity of the pendulum has the magnitude
of

vi(t) =
√

v2xi(t) + v2yi(t) + v2zi(t) . (28)

The dissipative properties of the pendula are de-
scribed as (16); or (17), if n = 1.

3 GENERAL PROCEDURE – PROGRAM

IMPLEMENTATION AND APPLICATION

Based on the theoretical background presented in
2.1 as well as the physical formulae derived in 2.2 and
2.3, we constructed a pair of general algorithmic proce-
dures which lead to the equations of motion for an arbi-
trary classical or rotary system of inverted pendula. With
aid of the Symbolic Math Toolbox, we successfully imple-
mented both procedures as MATLAB functions (invpen-
deriv.m for classical, rotinvpenderiv.m. for rotary),
which produce the equations in the simplified and rear-
ranged form, equivalent to the most likely form obtained
by manual derivation. In both cases, the number of pen-
dulum links needs to be specified as the function parame-
ter and the physically significant steps of derivation pro-
cess can be tracked in the command window output of
the function. Finally, we developed a MATLAB applica-
tion with graphical user interface, the Inverted Pendula

Model Equation Derivator, which provides a comfort-
able and user-friendly access to both functions: the user
is only required to select the desired type of system (clas-
sical/rotary) and the number of pendulum links. An ex-
ample preview of the Derivator window is listed in [2]
together with generated motion equations for a specified
inverted pendulum system.

To demonstrate the functionality of presented gen-
eral procedures, mathematical models of classical double
and rotary single inverted pendulum system were gen-
erated by the Derivator and will be presented below,
rearranged into the standard (minimal ODE-ordinary dif-
ferential equation) form [10]

M
(

θ(t)
)

θ̈(t) +N
(

θ(t), θ̇(t)
)

θ̇(t) + P
(

θ(t)
)

= V(t) (29)

where M(θ(t)) is the inertia matrix, N(θ(t), θ̇(t)) de-
scribes the influence of centrifugal and Coriolis forces,
P(θ(t)) accounts for gravity forces and V(t) is the in-
put vector, equivalent to (6). By comparing the obtained

results to those listed in the referenced works, and by
evaluating the open-loop responses of corresponding sim-
ulation models, it will next be assessed whether the gen-
erated mathematical models can be considered as valid
and accurate for control design purposes.

3.1 Case Study – Classical Double Inverted

Pendulum System

The classical double (two-link) inverted pendulum
system is composed of a pair of rigid, homogenous pen-
dulum rods which are interconnected in a joint and one
of them is attached to the cart [3]. The force input F (t)
acting upon the cart is used to control the three degrees
of freedom of the system: cart position θ0(t) in m, lower
pendulum angle θ1(t) in rad, and upper pendulum angle
θ2(t) in rad, (see Fig. 3).

Q

m0 F

m1g

l1
q1

J1q0

l2

m2g

J2

q2

x

y

Fig. 3. Classical double inverted pendulum system - scheme and
basic nomenclature

Using the Derivator, the mathematical model of the
system was generated in form of three second-order non-
linear differential equations which describe the dynamic
behavior of the cart, lower and upper pendulum respec-
tively. After the rearrangement into (29), the model as-
sumed the form







m0 +m1 +m2

(

1

2
m1l1 +m2l1

)

cos θ1(t)
(

1

2
m1l1 +m2l1

)

cos θ1(t) J1 +m2l
2

1

1

2
m2l2 cos θ2(t)

1

2
m2l1l2 cos

(

θ1(t)− θ2(t)
)

1

2
m2l2 cos θ2(t)

1

2
m2l1l2 cos

(

θ1(t)− θ2(t)
)

J2









θ̈0(t)

θ̈1(t)

θ̈2(t)



+







δ0 −
(

1

2
m1l1 +m2l1

)

θ̇1(t) sin θ1(t)
1

2
m1l1 cos θ1(t) δ1 + δ2

1

2
m2l2 cos θ2(t) −δ2 −

1

2
m2l1l2θ̇2(t) sin

(

θ1(t)− θ2(t)
)

1

2
m2l2 cos θ2(t)

−δ2 −
1

2
m2l1l2θ̇2(t) sin

(

θ1(t)− θ2(t)
)

δ2









θ̇0(t)

θ̇1(t)

θ̇2(t)



+





0
−
(

1

2
m1 +m2

)

gl1 sin θ1(t)

−
1

2
m2gl2 sin θ2(t)



 =





F (t)
0
0



 (30)
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where m0 is the cart mass, m1 ,m2 are the masses of the

lower and upper pendulum respectively, l1 , l2 are the

respective lengths of the pendula, δ0 is the friction coeffi-

cient of the cart against the rail, δ1 , δ2 are the damping
constants in the joints of the pendula, J1 = m1l

2

1
/3 =

JT1+m1(l1/2)
2 , J2 = m2l

2

2
/3 = JT2+m2(l2/2)

2 are the

moments of inertia of the pendula with respect to their

pivot points and F (t) is the force induced on the cart.

It was discovered that in most cases, the generated

motion equations of the system (30) are identical to

manually derived equations in referenced works, pro-

vided the latter were derived correctly (compare (30)

to the classical double inverted pendulum model in

[7, 10, 11]). Apart from the neglected friction, the only

significant difference noticed was the plus sign at the

potential energy terms (eg m2gl2 sin θ2(t)/2 instead of

−m2gl2 sin θ2(t)/2), which corresponds to an initial as-

sumption that the pendulum angle is determined against

the downward position.

The IPMaC block library contains a library block

Classical Double Inverted Pendulum (CDIP) which im-

plements the motion equations (30) derived above. The

open-loop dynamic behavior of the system was verified as

a response of the CDIP block to a force impulse with an

amplitude of 0.4 N and duration of 1 s, starting with all

pendula in the upright position. The numeric parameters

of the simulation were chosen as follows: m0 = 0.3 kg,
m1 = m2 = 0.275 kg, l1 = l2 = 0.5 m, δ0 = 0.3 kgs−1 ,
δ1 = 0.1 kgm2s−1 , δ2 = 0.1 kgm2s−1 . The time behavior

of the cart position and the freefall and stabilization of

both pendula is depicted in Fig. 4.
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Fig. 4. Classical double inverted pendulum system time behavior

- cart position and pendula angles

Reasonable behavior of the open-loop response of the
CDIP simulation model (damped oscillatory transient
state, system reaching the stable equilibrium point with
all pendula pointing downward, visible backward impact
of the pendula on the base) means that the simulation
model based on the generated motion equations can be
considered accurate enough to serve as a reliable testbed
system for the verification of linear and nonlinear control
algorithms.

3.2 Case Study – Rotary Single Inverted Pendu-

lum System

The rotary single inverted pendulum system is com-
posed of a homogenous pendulum rod attached to an arm
which is free to rotate in a horizontal plane [4]. The torque
M(t) applied on the arm is used to control the two de-
grees of freedom of the system: arm angle θ0(t) in rad,
and pendulum angle θ1(t) in rad (see Fig. 5). The system
was introduced to feedback control community in 1992
by Katsuhisa Furuta, Professor at the Tokyo Institute of
Technology, and hence it is often referred to as the Furuta
pendulum [12].

Q

M

q1

l1

x

y

z

m0g
l0

J0

m1g
J1

q0

Fig. 5. Rotary single inverted pendulum system scheme and basic
nomenclature

The mathematical model of the system is composed
of two second-order nonlinear differential motion equa-
tions which respectively describe the rotary arm and the
pendulum. The standard minimal form of the model gen-
erated by the Derivator is

(

J0 +m1l
2

0 + 1

4
m1l

2

1 sin
2 θ1(t)

1

2
m1l0l1 cos θ1(t)

1

2
m1l0l1 cos θ1(t) J1

)(

θ̈0(t)

θ̈1(t)

)

+

(

δ0 +
1

4
m1l

2

1 θ̇1(t) sin 2θ1(t) −
1

2
m1l0l1θ̇1(t) sin θ1(t)

−
1

8
m1l

2

1θ̇0(t) sin 2θ1(t) δ1

)

×

(

θ̇0(t)

θ̇1(t)

)

+

(

0
−

1

2
m1gl1 sin θ1(t)

)

=

(

M(t)
0

)

(31)

where m0 , m1 stand for the masses of the arm and
the pendulum, l0 , l1 are their respective lengths, δ0 ,
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Fig. 6. Rotary single inverted pendulum system time behavior –
cart position and pendulum angle

δ1 are the damping constants in the joints of the arm
and pendulum, J0 = m0l

2

0
/3 = JT0 + m0(l0/2)

2 , and

J1 = m1l
2

1
/3 = JT1 + m1(l1/2)

2 are the moments of
inertia of the arm and pendulum with respect to their
pivot points and M(t) is the input torque applied upon
the rotary arm.

Contrary to the previous case, a number of differ-
ences were noticed between the generated mathematical
model (31) and the models in referenced works. Most of
these can be attributed to the choice of coordinate sys-
tem (right- or left-handed) and the orientation of the an-
gles (clockwise/anticlockwise). Also, authors often sim-
plify the design by assuming that the pendulum is ro-
tating in a constant plane [13, 14] or neglect the rotary
motion of the arm altogether [15]. In this paper, it was
assumed that the actual plane the pendulum is rotating
in is different in every instant, which brings additional
complexity and high accuracy to the generated model.

The generated motion equations were implemented
into the IPMaC in form of the Rotary Single Inverted
Pendulum (RSIP) library block, and the open-loop dy-
namic behavior of the system was verified in a simulation
experiment in which the RSIP block was actuated from
an initial upright position of the pendulum by a torque
impulse of 0.4 Nm lasting 1 s. The numeric parameters
of the simulated system were chosen to be: m0 = 0.5 kg,
m1 = 0.275 kg, l0 = 0.6 m, l1 = 0.5 m, δ0 = 0.3 kgs−1 ,
δ1 = 0.011458 kgm2s−1 .

The similarity between Fig. 4 and Fig. 6 points out
that the dynamical behavior of classical and rotary in-
verted pendulum systems is closely related. The open-
loop response of the RSIP simulation model was shown
to be correct compared to generally known empirical ob-
servations of pendula behavior, and sufficient accuracy of
the simulation model was confirmed.

4 CONCLUSION

The purpose of this paper was to introduce a unifying
approach to the problem of mathematical model deriva-
tion for classical or rotary inverted pendulum systems
with an arbitrary number of pendulum links. By means
of extensive physical analysis, general algorithmic proce-
dures were designed which determine the Euler-Lagrange
equations for the base and every pendulum in a gener-
alized system of n classical or rotary inverted pendula.
The procedures were subsequently implemented as MAT-
LAB functions which generate the motion equations for a
user-chosen classical or rotary inverted pendulum system.
Practical importance of symbolic mathematical software,
represented in MATLAB by Symbolic Math Toolbox, was
demonstrated during the implementation. A GUI appli-
cation was also developed to provide a user-friendly, in-
tuitive interface to both procedures.

Classical double and rotary single inverted pendu-
lum system were selected as example systems to test the
proposed modelling method. The validity and accuracy
of mathematical models generated by the above appli-
cation was verified by comparing the obtained results
to those listed in the resources, and by evaluating the
open-loop responses of corresponding simulation models.
Pre-prepared function blocks from the custom-designed
Simulink block library, Inverted Pendula Modeling and
Control, were used in the simulation experiments. The
outcome of both approaches was highly satisfactory: all
possible deviations were justified by the laws of mechanics
and it was shown that the dynamic behavior of all models
is in agreement with the empirically observed facts about
the pendula movement.

The results of this paper allow the control engineer to
effortlessly obtain a highly accurate, error-free mathemat-
ical model of a selected inverted pendulum system, which
simplifies the process of model-based design and verifica-
tion of linear and nonlinear control methods for nonlinear
mechanical systems. Moreover, the readily available col-
lection of mathematical and simulation models of inverted
pendulum systems provides the testbed model basis to ex-
plore the properties of underactuated nonlinear systems,
mechatronic systems, hybrid automata and other con-
cepts. Finally, the developed application can be viewed
as a contribution to modelling and control education in
several ways: students improve their modelling skills by
testing their step-by-step results against a valid model,
and estimate the effect of different control approaches in
simulation before moving on to a laboratory model.
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[4] JADLOVSKÁ, S.—SARNOVSKÝ, J. : A Complex Overview of

the Rotary Single Inverted Pendulum System, Proc. of the 9th

Int. Conf. – ELEKTRO 2012, May 21-22, 2012, Žilina - Rajecké
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elováńı a identifikace systémů), Montanex, Ostrava. (in Czech)
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