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Abstract: This paper introduces a solution to the referemagdtory tracking problem done by

a differential wheeled mobile robot Khepera II. Teper includes a mathematical model of the
mobile robot, which we use for the acquisition asea training data for creating forward and
inverse neural model. The forward neural modelhef tobile robot we implemented into the

control structure of IMC together with the inverseural model. The purpose of the control
structure was the reference trajectory trackingjctwhwe verified using the Neural Network

Toolbox of Matlab/Simulink.
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1 INTRODUCTION

Mobile robots are suitable for different applicasan an environment where the high degree
of autonomy is required. The requirement of autopafthe mobile robot has become an important
part the scientific research in the last decadé@sceSthis is a mobile robot, the requirement of
autonomy is applied in particular way to move tbbat among the obstacles in the area i.e. tracking
defined reference trajectory. One way how to enaurggh degree of autonomy of reference trajectory
tracking of the mobile robot is to use model praédéccontrol approach [Kihne et all., 2005]. Anathe
way to track trajectory of the mobile robot is teeua neuro-fuzzy controller [Masar, 2007]. In that
paper, neuro-fuzzy controller is designed, whidbves the mobile robot to track the given trajectory

Modification approach [Masar, 2007] is mentioneaim paper with difference that instead of
the neuro-fuzzy controller we proposed nonparametgural controller as inverse neural model.
Simulation model of the mobile robot is based oaa mobile robot Khepera Il of K-Team Corp. [K-
Team], which was used to verify the proposed allyors for tracking defined reference trajectory.
Mobile robot Khepera Il has been chosen becausbave mobile robots Khepera Il at disposal in
our department, on which we would like to apply obitained results.

The paper is organized as follows. The part twdushes a mathematical model of the mobile
robot, which consists of kinematic and dynamic ga¥We proposed a control structure to ensure that
the mobile robot tracks one trajectory from thedfeteference trajectories. The mathematical model
together with control structure, we used to obta&ining data for modeling forward and inverse
neural model in the Matlab/Simulink. Part threetaims a design of forward neural model starting
with an acquisition of the training data going tigb training of model to validating of forward nalr
model of a mobile robot. The focus of this papenithe part four and in the part five. In the pgaxir
there is a design of inverse neural model of théilaobot, which will be used as a nonparametric
neural controller for tracking defined referencagectory in the control structure IMC. Part fiveatke
with simulation verification control structure IM@r tracking reference trajectory of the mobile
robot. Verification of IMC control structure foraking of the reference trajectory of the mobileaio
is situated in the part five. Output of IMC contsitucture, into which we have implemented the
forward and inverse neural model, was made a tajeof simulation model of the mobile robot.
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2 MATHEMATICAL MODEL OF MOBILE ROBOT KHEPERA 1l

Mobile robot Khepera Il has a differential chasbased on two independently driven wheels
with common axis of rotation. The chassis is congaleby the third wheel, which rotates in all the
directions and ensures the stability of the motuileot.

2.1 KINEMATIC MODEL OF THE MOBILE ROBOT

The created model is based on the several assumptiamely that the robot moves on a
perfect flat surface without sliding, and also et the rolling resistance of the wheels. Positibn
the mobile robot is given by the coordinatesy and angled, which represents the rotation mobile

robot in relation to the chosen coordinate systdabile robot is controlled by an angular velocity o
the wheelsw., , . Between the angular velocities ,a, and peripheral speedg ,v,, there are the
following relations

V. =fa, , Vg =rag Q)

wherer is radius of the wheel.
The movement in the plane y applicable relations

vL:(R+9Ja) , VR:(R—EJCU 2
2 2

where R is radius of the turning robot aral is the distance between the wheels. After modifyhre
equations (2) we obtain the equation for a periglhand an angular velocity of the mobile robot

Vv, +V
V_L R
2 b

®)

The position and the rotation of the robot in tlpace can be based on the above to express the
following equations, which form a kinematic modétlze mobile robot (Fig.1)

x(t) = %cos@

y(t) = %sine 4)

: Vg —V,
Ot)=w="_—"L
b
where the inputs into the system are speed whegland Vi, and the outputs arey,d. The

kinematic model (Fig.1) allows us to determine gusition and the rotation of the robot under the
condition that we know the initial state of the edland we have updated information about the speed
of the individual wheel [Sembera et all., 2007].

2.2 DYNAMIC MODEL OF THE MOBILE ROBOT

The kinematic model does not include friction fareeting on the wheel and the total mass of
the mobile robot, so we have extended the matheatatiodel of the dynamic part (Fig.2), which has
the following shape

Cl53a-2



9" International Conference PROCESS CONTROL 2010
June 7 — 10, 2010, Kouty nad Desnou, Czech Republi

ma =F_+F, (5)

(FL -F )b
> (6)

Je =
where tangent acceleratiaq is given by mass of the robot and tangent force$, andF;, which

acting on the wheels due to change in the rotapeed. The angular accelerations determined by

the same forces, moment of inertia of the robaind distance between the whebIgGajdusek et all.,
2006].

ylk

Fig. 1 - Kinematic model of the mobile robot Fig. 2 - Dynamic model of the mobile rai

If we choose the state variable peripheral speethefmobile roboxl(t):v(t), so after
modifying the equation (5) we get the following atian

F. . F
« (t)=_L +_R 7
%)=+ (7)
If in the equation (7) we consider that tangentésrF_andFare input variablesul(t) and uz(t)

i.e.ul(t) =F_and uz(t) = F then the equation (7) will have the shape

. 1 1
Xl(t):Eul-'-Euz (8)

When we apply the same procedure to the equatijowi(b difference that we have selected for the
state variablex, (t) as an angular velocity of the mobile robozt(t)= a(t) with unchanged inputs

u,and u, after modifying we get second state equation ofifreamic model of the mobile robot

. b b
Xz(t)zzul_ﬁuz %)
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An angular speeds., and . (@, =8, ,ws =6;) of the mobile robot are driven by the
voltagesU, andJ . Differential equations expressing this fact htheeshape [Dominguez, 2007]:

36, (t)+ F6.(t)+ Fr =u, (10)
JG,(t)+ F 8, (t) + For =U (11)

where F; is the friction force acting on the wheel.

If we consider that next state variabtg(t) is an angular speed of the left wheel 'xg(t) =6, (t)
then the equation (10) will have the shape

)‘(S(t):——xs(t)—%FL +%UL (12)

For the inputus(t) we have chosen voltage, which we drove the Ieﬁewl/he.us(t) =U_ then after
modifying the equation (12) we get the followingtstequation

) F 1
Xs(t)z_Tsz(t)_%ul"'jus (13)

The same procedure as we applied for the equati@nwith exception that we have selected for the
state variablex, (t) an angular speed of the right wheel ixg(t) = QR(t). For inputu4(t) we have

chosen by voltage, which we used to drive of thhatrivheel i.e.u, (t) =Uj then after modifying we
will get the final state equation

. F 1
X4('[):——TX4('[)—%U2 +3u4 (14)

From the equations (8), (9), (13), (14) we haveaimigd a dynamic model of the mobile robot in the
state space

1 1

Xl(t):Eul-'-;,]uZ
b 1
Xz(t)—ZJ U, 53 2 s
%(t) =~ (t) -y + S
3 J 3 J 1 J 3

. F 1
X4(t): ——TX4('[)—%U2 +3U4

where the state variables system and their degveee the following physical meaning:
X(1) = [ (1), %, (0), % (1), %, (0] = [V(D), (), @, (©), ()]

X() = [% (1), %, (0), % (0, %, (0] = [, (1), £(0), £, (©), £, ()]

the inputs into the system arer = [ul(t),uz(t),u3(t),u4(t)] = [FL ,Fs U U R]

and the outputs from the system ayt) = [yl(t), Y, (t)] = [X3 (t), %, (t)].
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2.3 IMPLEMENTATION OF THE MODEL ROBOT INTO THE SIMU LATION LANGUAGE
MATLAB/SIMULINK

As was mentioned in section 2.1 and 2.2 the mattieahanodel of the mobile robot consists
of akinematic (4) and dynamic parts (15). Kinematnodel of the mobile robot serves for
determining the coordinates the current positioly and the anglé, which represents the rotation of

the mobile robot in the relation to the chosen dowte system. The inputs into the kinematic model
are an angular velocitiea, , g, which are generated by the dynamic model (Figz®)m the state
equations of the dynamic model of the mobile rdti8) we can obtain state description in the shape

x(t) = AX(t) + Bu(t)
y(t)=cx) =

where matrixesA, B,C have following structure

1 1
= = 00
00 O O o m
00 2 0 2 -2 00 0010
A=|o 0 -= o |,B=[2] 2 ,C= (16a)
J 9 1o 0 001
00 o0 -t J I
J O—L 0o =
J J

To ensure satisfactory properties of the dynamidehof the mobile robot, we have proposed
PI controller parameters using the standard shagibad (Fig. 3 dynamic model + PI controller). For
the design parameters of Pl controller we obtathedtransfer function from the state description fo

the inputs u, and u, which has the following shape

F(S) = E)is—-'-bo (17)

a,s” +as+a,

We have proposed a simulation scheme of the mofdé¢heo mobile robot (Fig.3) in the
Matlab/Simulink, based on the equations of the kiatc (4) and dynamic models (15) together with
the proposed PI controllers, for the defined patamseof the mobile robot:

J = 0.1kgn? — moment of inertiaf = 0.005m — radius of the wheelfF; = 0.0003N — friction

force, m = 008kg — mass of robot) = 005m - distance between wheels.

The input into the model robot are an angular vgkx for the left and the right wheels
(fider_L, fider_R) and outputs are coordinates the current positibthe robot %, y) and current
rotation of robotgngle)
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Dynamic model + PI controller
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Fig. 3 — Simulation scheme of the model robota

We proposed a control structure to ensure thatribigile robot tracks one trajectory of the set
of reference trajectories (Fig.4) [Fic, 2009]. Tihputs into control structure of the model robat ar
coordinates of the current position of the moddlotc, y (real x, real y) and the coordinates of the
reference trajecton.r, Yier (reference x, reference y). We have calculated Euclidean distance between
current and desired position of the model robotrt®ans of these coordinates. The input into control
structure is also actual rotation of robot, whidmpares with calculated rotation of the robot. The
outputs from control structure are angular velesifior the left and the right wheébér_L, fider_R).

o -
real x -1

& Product
reference x " = ]
2 “] Switch fider_ L
Math Gain Saturation
o Function
reference y N
% <Pl -
D, - ]
realy Productl Saturatiort N
5
Switchl fider_R

delta x
uhol1
deltay

robot rotation

angle
Fig. 4 — Simulation scheme of the control structe

We used subsystems control structure and modéteofdbot in the simulation scheme for
acquisition of training data needed for designariverd (Fig.6) and inverse neural models (Fig.12),
which we have implemented into control structureClivith the aim of tracking of the defined

reference trajectory. Simulations were carriedtyuthe sample periog, = 001s.

3 FORWARD NEURAL MODEL OF THE MODEL ROBOT

Neural model, which approximates dynamic of thetesysis called forward model. Neural
network is placed in parallel with the identifiaati system and the error between output of the heura

network )7(k +1) and output of the dynamic systh(‘k +1), the so-called prediction error, is used as
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training signal for neural network (Fig.5) of MLiptk.

4

id

SYSTEM

vy

+
Y
FORWARD NEURAL | j(k+1)
MODEL ?
TRAINING e(k+1)
ALGORITHM

Fig. 5 — Identification structure based on outpuiprediction error

If the output of the neural model gs(k +1) then we can express the equation by approximation

y(k +1) = f[y(k).....(k =n+2),u(k)....,u(k - m+1)]

(18)

where f is non-linear input-output representation dynanaitthe mobile robot by the neural model
and y(k) resp. u(k) isn— output respm — input of the previous values [Jadlovské& et 20Q2].

3.1 OBTAINING OF THE TRAINING DATA
We proposed the following simulation scheme forotwtain a set of training data in the

Simulink:

fider_L(k)

ref_x.mat

ref_y.mat

real x

reference x fider_L

angle

eference

TOIerenCe Y fider R
realy

I

| fider_L

angle [

dx|

contro| structure

fider_R

dy

model_robot

1/z

1/z

1/z

1/z

fider_L(k-1)

fider L(k-2)
dx(k-1)
dx(k-2)
dy(k-1)

dy(k-2)

fider_R(k)

fider_R(k-1)

fider R(k-2)

dx(k)

0| oupue|

Fig. 6 — Simulation scheme for acquisition of traiing data for forward neural model

During the simulation, for the input of the systeras defined reference trajectory, which was
represented by the x and y coordinates. Then dasttiecture generated inputs for the model of robot
that are shown in Fig. 7
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Fig. 7 — The inputs to the system to obtain traimig data for the forward neural model

Output signals from the system are shown in thewviohg Fig. 8

0.03 T T T T T T T T 0.015

derivative coordinates x [m/s]
=3
8

derivative coordinates y [m/s]

0 ‘5 1‘0 1‘5 Z‘D 2‘5 3‘0 3‘5 4‘0 45 0 ‘5 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 45
time[s] timefs]
Fig. 8 — Outputs from the system to obtain trainiig data for the forward neural model

3.2 TRAINING OF THE FORWARD NEURAL MODEL OF THE MOB ILE ROBOT

We have chosen Gauss-Newton optimization methoé;hwhinimized the criterion (19) for
training of the forward neural model of the mobiot:

S (y() - 50))° 19)

C2NZ

where N is number of the samples in the set of the traimiata (Fig.5). For training of the forward
neural model, we used a forward neural network eftM_ayer Perceptron (MLP) type with ten
neurons in the input layer, with ten neurons in iidden layer and with two neurons in the output
layer. The training of forward neural model wasrieatl out by the Levenberg-Marquardt algorithm
using Neural Network Toolbox.

3.3 VALIDATION OF THE FORWARD NEURAL MODEL OF THE M OBILE ROBOT

The validation of the model is the next step aftez training of the neural modeFor
validation of the training model, we used the faflog simulation scheme:

C153a-8



9" International Conference PROCESS CONTROL 2010
June 7 — 10, 2010, Kouty nad Desnou, Czech Republi

»
o
X XY Graph
I
rea I P fider_L
ref xmat Ly eference x fider_L y
From Filel P angle angle —
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Fig. 9 — Validation of the forward neural model ofmobile robot

We supplied a new reference trajectory for the trgiuthe simulation system (Fig.9), which
caused that the input of model was supplied diffeamgular velocities than during phase of training
The following pictures are graphs comparing theotg of the model robot and of the neural model of
robot (NN1).

P X robot
—xNN1

coordinates x [m]
coordinates y [m]

0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450
time[s] time[s]

Fig. 10 — Comparison outputs of the system and ttie forward neural model
From Fig.10 we can see that our proposed forwargtahenodel approximates dynamic of

system of mobile robot even if we changed referemagectory. Forward neural model (NN1)
therefore can be used in the control structure thighinternal model (IMC) (part 5).

4 INVERSE NEURAL MODEL OF THE MOBILE ROBOT

Inverse neural model of the system is an imponpant of the theory of control. If the forward
neural model is described by the equation (18)) the inverse model can be expressed in the form:

u(k) = £ Yr(k +1), y(k),...,y(k = n+2),u(k),...,u(k - m+1)] (20)

where y(k +1) is an unknown value, therefore it is substitutgdte reference value of the control
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variable r(k +1). To obtain inverse neural model, we have chosene(@é training architecture

(Fig.11). Signalu(k) is applied to the input of the structure basednpuit predictive error with the
aim of to obtain a corresponding system ouy(kt), while the neural network is trained by the error
e, (k) which is obtained as the difference of the neovadiel outpuu](k) and input signau(k) into
the system [Jadlovska et all., 2002].

u(k)

> SYSTEM

»

y(k)

INVERSE NEURAL
MODEL

Fig. 11 - General training structure

We have obtained a set of training data for desmgan inverse neural model from the following

simulation scheme:

ref_x(k)
ref x(k-1
x(el)
x(k-2)
real x —Pfider_L y 1/z 1z
x(k-3
4’ reference x fider_L (k-3)
angle [
—P angle 1 dx(k-1)
@ ) referencey fider _R > fider_R o dx(k-2)
- - 1/z
r»realy o .
fider L(k-3
contro| structure 1z 12 1z
model_robot m
ref y(k) p!
ref y(k-1
y(ked)
k-2
™ 1z 1/z A
y(k-3)
i dy(k-1)
fider_L(k-2
L(c2) P "
dy(k-2
y(k-2)
» fider_R(k-3)
1z [* " 1z 1/z 1/z

Fig. 12 — Simulation scheme for acquisition of tiaing data for inverse neural model

We supplied to the input of the simulation scheraéingd reference trajectory, which was
represented by the x and y coordinates. The inputdhhe model robot generated by the control
structure are shown in the Fig.13. Output fromdimeulation scheme is a set of training data, which
we have used to train inverse neural model in thae@l training structure. For training the inverse
neural model, we have used the forward neural m&twbMulti Layer Perceptron (MLP) type with
fourteen neurons in the input layer, with five reng in the hidden layer and with two neurons in the
output layer. Training of inverse neural model een carried out by the Levenberg-Marquardt
algorithm.

The obtained inverse neural model was applied énctintrol structure IMC as nonparametric
neural controller for tracking defined referencajdctory of mobile robot Khepera Il. We have
proposed the IMC filter into control structure tmgtter tracking trajectory. The goal of the trackia
to control the movement of mobile robot from thenpd to the point B along the chosen reference
trajectory (Fig.14).
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Fig. 13 - The inputs to the system to obtain traimg data for inverse neural model
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angular velocity of the right wheel [rad/s]

0.1

axis y

8 9 10
axis x

Fig. 14 — The reference trajectory of the mobileabot

5 APPLICATION OF CONTROL STRUCTURE IMC AT THE TRACK ING DEFINED
REFERENCE TRAJECTORY OF MOBILE ROBOT

We have implemented the obtained forward (parirkrse (part 4) neural model and IMC
filter into the Internal Control Structure (IMC)i¢f15) with the aim of verify tracking the defined
reference trajectory (Fig.16) [Kajan, 2009].

)+ 7 INVERSE NEURAL y(k)
— MODEL +—> SYSTEM
N/
-A
0 -
YK =N
FORWARD NEURAL AR
MODEL \__J
e(k) [
IMC FILTER

Fig. 15— The internal model control (IMC) structue

The output from simulation scheme (Fig.16 — XY Grgjs current trajectory of simulation
model of the mobile robot (Fig.17) controlled by thonparametric neural controller (NN2).
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: ]
fider R 7 b
3 NNL
<
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filter
Fig. 16 — Validation of the inverse neural modelfadhe mobile robot in the control structure IMC
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axis x [dm]

Fig. 17 — Comparison defined reference trajectorgand output from IMC structure

From Fig.17, we can see that simulation model dbitleaobot Khepera Il follows the defined
reference trajectory. We verified the functionalitiye obtained neural models for other sinus
trajectories with other amplitudes. If we want teaoge trajectory, it is necessary to train a new
inverse and forward neural model.

CONCLUSION

The aim of this paper was to use intelligent apgmofor tracking of the defined reference
trajectory based on forward neural networks. Matwgral model of the mobile robot, which consists
of kinematic and dynamic part, was controlled by ginoposed control structure when the acquisition
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of training data, necessary for proposal forward amverse neural models. The obtained neural
models were implemented into the control struct¥€, by means of which we was able to track of
the defined reference trajectory. If we want tonge trajectory we must to train the new neural
models. The training of neural models is done néflthat we can to obtain set of the inverse neural
models and then we can use the individual modelrémking of the various types of trajectories. We
want to use the obtained knowledge in the fieldkireg reference trajectory of the mobile robot for
real mobile robot Khepera lll, which are at disgasaur laboratory at the Department of Cyberreetic
and Avrtificial Intelligence.
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