SAMI 2017 - IEEE 15th International Symposium of Applied Machine Intelligence

Multiobjective assembly line optimization

Ján Čabala¹

Supervizor: Ján Jadlovský²

Technical University of Košice,

Faculty of Electrical Engineering and Informatics, Department of Cybernetics and Artificial Intelligence, Košice, Slovakia

jan.cabala@tuke.sk1, jan.jadlovsky@tuke.sk2

Abstract - Poster aims at my up-to-date status of my dissertation. Introduction into the topic and main goals of my PhD. thesis are defined, followed by methods of assembly lines' modelling, multiobjective decision making and multiobjective optimization. Also, partial results of my work are shown, as well as expected scientific and technological contribution of my dissertation.

> assembly line, multiobjective decision-making, multiobjective optimization Keywords

Introduction

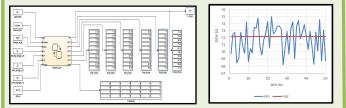
Main motivation in my research is definition of the complex methodology in the field of multiobjective assembly lines' optimization for solving tasks connected with assembly lines' optimization. In order to solve this problem, tasks dealing with modeling of assembly lines , configuration of assembly lines and scheduling the orders by using multiobjective decision making methods, and last but not least, optimizing of production process realized by multiobjective optimization methods.

Goals

- Define complex methodology of multiobjective assembly lines' optimization process
- Optimize the functionality of assembly line with focus on time and profit optimization
- Define the multiobjective decision-making and multiobjective optimization methods

Adel the processes in assembly lines

- Create simulation models of assembly lines within DCAI
- Use them for definition of the mathematical assembly line model


Apply the methodics on DCAI assembly line models

 Solve tasks of optimal configuration and optimal production process using MoDM and MoO methods

Results

Modelling

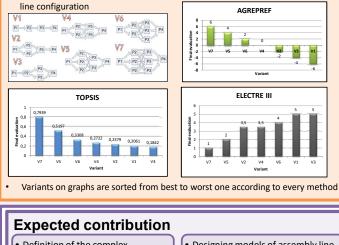
- Simulation models of two assembly line model within DCAI were designed and their functionality was compared with real model
- Simulation model of m/m/C queueing system was designed

Multiobjective Optimization

- Algorithm for MoO, which uses methods of defining the set of nonimproving elements and compromising methods, was implemented in MATLAB
- Application for solving MoO tasks with linear or quadratic objective functions was designed

	Quebulo objective function		Linew standive function		- Results of partial optimization
Guadratic norm	Malifix of qualitatic elements		Coefficients vector of linear function	10:00 0 1 0:072	0.4 4 80754-009 0.6 0.19447 0.43038 0.30616
Linew norm	Coefficients vector	10.0.05			- Vector optimization result 0.22082 0.50573 0.40535
ATT ADDRESS FORM		- maximize			
	Fight permitters for both	h Mectoria			Gradi
Vagetast norm	Russies of variables	(a)	Matrix of optimized factor weights	0.12	0.6 pptmization via 1st OF 0.6 Vector optimization
Veighted Buest Bic norm	Latt odes megualites contrate matrix	14.1-0.05-0.161	Left sizes equalities conditions matrix	019	
	Pagis stars traguidine condrains vector	10.12	Right oxies equalities contributa vector		0.3
	Lowest boundaries webby	.zeros(3,1)	Laper tourstance	234,04044	02-

Parts of research


- Methodology of multiobjective optimization process Synthesis of MoDM and MoO methods
- Modelling the processes in assembly lines
- Stateflow models of assembly lines and queuing systems
- Multiobjective decision making tasks (MoDM)
- Optimal configuration of assembly line
- Multiobjective optimization tasks (MoO)
- Optimal production process

Methods and approaches

MoDM MoO ELECTRE methods · Methods of defining the set of non improving TOPSIS elements AGREPREF Compromising methods AHP Hierarchical order methods PROMETHEE AI algorithms

Multiobjective Decision Making

Algorithms for ELECTRE methods, TOPSIS and AGREPREF were implemented in MATIAB Implemented MoDM methods were used for solving model task of assembly

Definition of the complex methodology of MoO of assembly lines

Scientific

- Synthesis of various methods of
- Designing models of assembly line production process
- Developing applications and scripts for solving MoDM, MoO and queueing system tasks

Engineering

This research has been supported by Vega project implementation – Dynamic Hybrid Architectures of the Multi-agent Network Control Systems(No.1/0286/11), supported by the Scientific Grant Agency of Slovak Republic, by the KEGA project implementation – CyberLabTrainSystem – Demonstrator and Trainer of Information-Control Systems (No. 021TUKE-4/2012), by the Research and Development Operational Program for project: University Science Park Technicom for innovative applications with knowledge technology support, (ITMS code 26220220182), co-financed by the ERDF, by by the KEGA project implementation – CyberLabTrainSystem - demonstrational and training of information-control systems - innovation (No. 001TUKE-4/2015)and by TUKE grant FEI-2015-33: Research Laboratory of Nonlinear Underactuated Systems

MoDM

