

TUKE FEEI DCAI

Ing. Matej Oravec doc. Ing. Anna Jadlovská, PhD.

Supervisor:

SCYR 16.5.2017

TOPICS OF INTEREST

1. MODEL OF THE DYNAMIC SYSTEM

model of the hydraulic system

$\frac{dh_1(t)}{dt} = \frac{1}{S} \left(q_1(t) - q_{13}(t) \right),$
$\frac{dh_2(t)}{dt} = \frac{1}{S} \left(q_2(t) + q_{32}(t) - q_{20}(t) \right),$
$\frac{dh_3(t)}{dt} = \frac{1}{S} \left(q_{13}(t) - q_{32}(t) \right),$

Inputs		Outputs	
1 st tank input	$q_{1}(t)$	1 st tank level	$h_1(t)$
and tonly input		2 nd tank level	$h_2(t)$
flow rate	$q_2(t)$	3 rd tank level	$h_3(t)$
max flow	, $q_{2\max}$ $1.5 \times m^3$	1.5×10^{-4} m ³ /s	
max tanks lev	$h_{2\max}$, $h_{3\max}$ 0.62	0.62 m	

2. CONTROL DESIGN

- only the 1st and 2nd tank are controlled in order to maintain controllability of the hydraulic system
- state feedback control with integrator z(k) using pole placement method
 Fault-free system - 0.5

$$\mathbf{u}(k) = -\mathbf{K}_1 \mathbf{x}(k) - \mathbf{K}_2 \mathbf{z}(k)$$

3. SIMULATION MODEL

Implementation of the hydraulic system in selected control structure into the MATLAB/Simulink environment

4. MODEL-BASED FAULT DIAGNOSIS METHODS OF DYNAMIC SYSTEMS

$\boldsymbol{f}_{a}(t)$ $\boldsymbol{f}_{s}(t)$ Fault detection $\boldsymbol{y}_{re\!f}(t)$ $\boldsymbol{y}(t)$ u(t)and diagnosis (FDD) control law dynamic system group of faults detection and estimation filters states estimation faults faults detection & isolation magnitude Fault Fault Fault diagnosis detection isolation estimation faults estimation system $f_{a}^{} igvee$ estimation f_{s} estimation

3. FDD algorithms design

1. FDD methods

4. implementation into the MATLAB/Simulink

2. selected structure

SUMMARY (1)

- state feedback control design and verification using the hydraulic system and its implementation in selected control structure in MATLAB/Simulink
- algorithm design for the fault estimation of the hydraulic system sensors and its implementation in MATLAB/Simulink
- prepared methodology for the fault diagnosis of the dynamic system
- results was summarized in the paper SENSORS FAULT DIAGNOSIS ALGORITHM DESIGN OF A HYDRAULIC SYSTEM, which was accepted in Acta Electrotechnica et Informatica journal

SUMMARY (2)

- predictive control design and verification using the Ball and Plate and its implementation in selected control structure in MATLAB/Simulink
- concept design of the diagnosis system
- results was summarized in the paper INTELLIGENT POSITIONING PLATE PREDICTIVE CONTROL AND CONCEPT OF DIAGNOSIS SYSTEM DESIGN, which was accepted in the Journal of Manufacturing and Industrial Engineering

NEXT STEPS

- design and verification of fault tolerant control structures
- Implementation of algorithms within distributed control system
- member of ALICE Collaboration in CERN Alice experiment
- Detector Control System ALICE solving tasks
- summarized of the PhD. research in dissertation thesis

Dissertation thesis is solved within the projects:

- Experiment ALICE on LHC in CERN: Study of strongly interacting matter at extreme energy densities
- University Science Park Technicom for innovative applications with knowledge technology support and 2nd phase
- KEGA 001TUKE-4/2015 CyberLabTrainSystem and inovation
- Grant TUKE FEI-2015-33: Research Laboratory of Nonlinear Underactuated Systems

THANK YOU FOR YOUR ATTENTION