
Predictive Control using the Nonlinear Predictor 

1
Štefan JAJČIŠIN (3

rd
 year)  

Supervisor: 
2
Anna JADLOVSKÁ 

Dept. of Cybernetics and Artificial Intelligence, FEI TU of Košice, Slovak Republic 
 

1
stefan.jajcisin@tuke.sk, 

2
anna.jadlovska@tuke.sk 

 

Abstract—The main goal of the paper is to introduce the 

modification of basic predictive control principle with using the 

nonlinear predictor of controlled system’s behaviour. The basic 

principle and design of predictive control algorithms based on the 

linear model is mentioned in the paper, too. Testing of introduced 

control algorithms is carried out by control of the laboratory 

hydraulic system. 
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I. INTRODUCTION 

The paper deals with the predictive control with using a 

linear and a nonlinear predictor of controlled system’s 

behaviour. Firstly, the basic principle and design of predictive 

control algorithms based on the linear model are introduced. 

Next the modification of control algorithms design using the 

nonlinear predictor is mentioned. As controlled system for 

algorithms testing the laboratory model of hydraulic system is 

used, whereby its predictive control based on the linear model 

was published in [8]. In this article only results obtained by 

predictive control with nonlinear predictor are presented.   

II. PRINCIPLE OF PREDICTIVE CONTROL 

The typical feature of the model-based predictive control 

(MPC) is using the behaviour prediction of controlled physical 

system in control action computation at each sample. 

Predicted values of particular quantities are computed on the 

basis of the controlled system’s model. 

Regarding to used model of controlled system predictive 

control algorithms can be divided into two categories: 

A. algorithms based on the linear approximation of nonlinear 

physical system – as discrete transfer function 
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where Bz(z
-1

) is numerator’s polynom (order m, coefficients bi) 

and Az(z
-1

) denominator’s polynom (order n, coefficients ai), 

or in discrete state-space model form 
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where Ad, Bd, C and D are matrices, x(k) is state vector, u(k) is 

input vector and y(k) is vector of system’s output.  

B. algorithms, which use the nonlinear model like 
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where x(t) is state vector, u(t) is input vector, y(t) is vector of 

system’s output, f and g are vector nonlinear functions. 

 In predictive control algorithms, an optimization task is 

executed for computing the value of control action. Its main 

principle consists in minimization of criteria function 
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where ŷ(k) is vector od predicted output, w(k) is vector of 

desired value, u(k) is vector of control action values [1]. 

Values N1 and Np represent the prediction horizon and Nu 

constitutes the control horizon, on which the optimal sequence 

of control action u(k) is computed, whereby u pN N [2]. 

The Receding Horizon Strategy is typical for predictive 

control algorithms [1]. It means the optimal sequence of 

control action    opt opt opt uk k N   u u u  is 

computed on control horizon Nu at each sample k, however 

only the first element uopt(k) is used as system’s input u(k). 

The most used approach to predictive control algorithms 

design can be divided to three steps: 

1)  the predictor derivation on the basis of the controlled 

system’s linear model, 

2)  the expression of gradient g
T
 and Hessian matrix H, 

3)  the optimal sequence of control action computing by 

criteria function minimization. 

We are focused on the MPC algorithms design’s particular 

steps in next paper’s part. 

III. DESIGN OF MPC ALGORITHMS WITH LINEAR PREDICTOR 

The input of the first step of MPC algorithms design is the 

linear model of controlled system. The result of this step is the 

predictor in the matrix form 

ˆ
f  y y G u , (5) 

where ŷ is vector of predicted output values, yf is vector of 

system’s free response and GΔu constitutes the system’s 

forced response [1]. 

The concrete expression of vector yf and matrix G depends 

on used form of the physical system’s linear model. We are 

using the state-space model of dynamical systems in this 

paper, where the control action rate can be written explicitly: 
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According to [3] it is possible to derive the predictor in 

form 

1
ˆ ( ) ( 1)
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y
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by iterations of state-space model equations (3). In formula (7) 

the free response yf is computed on the basis of state quantities 

current values x(k) and input’s previous values u(k-1), where 

provided that D is matrix of zeros 
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It is needed to reduce the matrix G regarding to the length of 

control horizon Nu 
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0
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where I is unit matrix with dimension .u uN n , whereby nu is 

number of system’s inputs[1]. 

The second step of MPC algorithms design is focused on 

the work with criteria function’s (4)  in matrix form – in our 

case we consider the weighting of control action rate Δu  

   ˆ ˆ
T T

MPCJ     y w Q y w u R u . (10) 

It should be expressed in suitable quadratic form for 

computing  the optimal sequence of control action rate Δu. 

The particular vectors ŷ, w, Δu, and weighing matrices Q, R 

have their dimensions in accordance with the length of 

horizons Np, Nu and numbers of controlled system’s outputs 

and inputs. 

After the predictor (7) substitution to the criteria function 

(10) we can obtain the equation 
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which can be expressed as quadratic form 
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where the matrix H and the vector g
T
 are 
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The minimization of quadratic form (12) is executed in the 

third step of MPC algorithms design. In opposite to classical 

dynamical systems control approaches the advantage of MPC 

algorithms is possibility to respect system’s constraints in 

optimal sequence of control action computing. 

 We are using the function quadprog, which is part of the 

Optimization Toolbox in Matlab for quadratic form (12) 

minimization. The algorithm for vector of optimal values 

Δu computing by formula 

1
min

2

T T   
u

u H u g u ,  

with respect to con con A u b , (14) 

is implemented in quadprog function.  

The matrix Acon and the vector bcon should be defined 

according to system’s constraints [2]. 

 While the predictor derivation and Hessian matrix H 

expression can be executed in advance, the values of gradient 

g
T 

and criteria function JMPC minimization are carried out 

during control loop. This approach to predictive control is the 

most used all over the world. We were considered it in control 

of the Hydraulic laboratory model in [8]. 

IV. DESIGN OF MPC ALGORITHS WITH NONLINEAR PREDICTOR 

It is obvious from text before, that the control action value 

is computed on the basis of the linear model at each sample 

time in MPC algorithms. Thus, it is very important to 

approximate the controlled system’s dynamics good enough 

by the linear model. In opposite case the control cannot be 

adequate, eventually it can destabilize the controlled system. 

In this paper’s part we present a modified approach to MPC 

algorithms, where the predictor with nonlinear character is 

used in computing the control action. As predictor we will use 

nonlinear differential equations (3) – next only NDE, 

describing the controlled system’s dynamic. 

We are engaged in two variants of using the nonlinear 

predictor in this paper. In the first case, we will use the basic 

principle of MPC, where we will modify the design procedure 

in such a case that the system’s free response will be computed 

from the solution of NDE. Any other computations will be 

based on the predictor in linear form. The second variant is 

using the fully nonlinear predictor. 

 

Using the nonlinear predictor in free response computing 

Regarding to the nonlinear character of model, the 

computing of system’s free response vector values yf is 

possible only by numerical methods. For NDE equations (3) 

we will use solution by 4
th

 ordered Runge-Kutta method [4]. It 

is necessary to execute the prediction cyclically for Np 

samples, where the system’s state from sample k – 1 is used as 

initial values for computing the solution in current sample k. 

In programming way, it is also necessary to modify the 

function for control action computing in accordance with Fig. 

1. In the frame of control action computing, there are only few 

more numerical computations in control loop in comparison to 

classical approach with completely linear predictor. Therefore, 

we suppose only little, possibly neglectable increasing of MPC 

algorithm’s computational time. The advantage of this 

approach is that the minimization of criteria function, what is 

the critical part of MPC algorithms regarding to computational 

time, stays unchanged. It means the optimization problem can 

be rewritten to quadratic form and computed by the numerical 

method of quadratic programming. As we have already 

mentioned it, the nonlinear predictor in system’s free response 

computing constitutes only partial using of predictor’s 

nonlinear character. The nonlinear character affects only 

values of gradient g
T
. 

 



 
Fig. 1 Part of flow chart diagram for computing the controlled system’s free 

response 

In case of systems, which cannot be approximated by the 

linear model good enough, even this approach cannot be 

useful to ensure desired behaviour of controlled system. 

Therefore, in next paper’s part we will focused on the 

nonlinear predictive control, which uses the nonlinear 

predictor in whole MPC algorithms design. 

 

Nonlinear predictive control 

The nonlinear predictive control keeps the basic principle of 

MPC, however the main idea of this approach is that the 

model and the predictor are defined by nonlinear functions 

f a g: 
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where u(k) is vector of inputs, x(k) is vector of state quantities, 

v(k) is vector of measurable disturbances, z(k) is vector of not 

measurable disturbances, (k) is noise vector and y(k) is vector 

of system’s outputs [5]. 

 It is not possible to use the MPC algorithms design, which 

was introduced in previous paper’s parts in this case, because 

it is not able to express the predictor in matrix form (7) from 

equations (15). Thus, it is not possible to rewrite the criteria 

function in quadratic form (12). For that reason it is necessary 

to do direct minimization of criteria function by numerical 

methods for computing the control action value u(k). In our 

case we used method of Sequence Quadratic Programming 

(SQP). According to [6] it can be proved that solution 

obtained by SQP is equivalent with Newton-Lagrange solution 

and it converge quadratically near the minimum point. 

 We used function fmincon, which is part of Optimization 

Toolbox in Matlab for obtaining the nonlinear optimization 

problem solution. By suitable choice of optimization 

algorithm (in our case it is SQP) it is possible to find a 

minimum of arbitrary function Fun with respect to constraints 

defined by Acon, bcon near to the point u0. The simplest syntax 

of this function in Matlab is 

0( , , , )con confmincon Funu u A b . (16) 

In case of nonlinear predictive control the function Fun 

represents the criteria function (10), where computing of the 

predicted output values is carried out by numerical Runge-

Kutta method again. 

Principially, it is possible to express the nonlinear 

predictive control algorithm by Fig. 2. 

 
Fig. 2 Nonlinear predictive control algorithm 

 

The minimization of criteria function in nonlinear form 

spends a lot of computational time, therefore the nonlinear 

predictive control should be used in control of dynamic 

systems with slower dynamics, mainly in control of thermal, 

chemical or hydraulic systems. Especially for that reason we 

applied the nonlinear predictive control to laboratory model of 

Hydraulic system, which is located in Laboratory of 

mechatronic systems at the Department of Cybernetics and 

Artificial Intelligence 

 (http://kyb.fei.tuke.sk/laben/modely/hyd.php). 

V. HYDRAULIC LABORATORY MODEL CONTROL WITH MPC 

ALGORITHMS WITH NONLINEAR PREDICTOR  

In this part we are engaged in predictive control of 

Hydraulic laboratory model, where MPC algorithms with 

nonlinear predictor, introduced in part IV, are used. Regarding 

to the fact, that predictive control is primarily used for systems 

with slow dynamics, we used the hydraulic system. The 

predictive control of this system based on the linear predictor 

has already been carried out in [8]. 

 
Fig. 3 Hydraulic system of two tanks 



The hardware configuration and systemic view of hydraulic 

system was presented in [7]. Nonlinear differential equations, 

which represent the model’s mathematically-physical 

description are: 
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where g is the acceleration of gravity and the value kp 

expresses the relation between input voltage U(t)  and inflow 

qin1(t). A schematic illustration of hydraulic system is depicted 

in Fig. 3, whereby particular physical parameters are: 

S - intersection of tanks, 

Sv1, Sv2 - intersection of outlets of both tanks, 

hmax - height of tanks (maximal liquid level). 

Physical quantities 

fm(t) - pump’s motor frequency, 

h1(t), h2(t) - current levels of liquid in both tanks 

constitute system’s input and outputs. 

Sensors, which scan the current liquid level in both tanks are 

marked as Sn1 and Sn2. 

We present results of Hydraulic system control with 

predictive control algorithms with nonlinear predictor on next 

figures. Results are presented as time responses of control 

action and liquid levels in both of tanks, whereby the goal of 

control was to ensure desired value of liquid level in the 

second tank h2(k). We used algorithms setting in accordance to 

Tab. 1, where Ts is the sampling time and I is a unit matrix. 

Ts Np Nu Q R constraints 

4s 10 2 1000I 0,01I 0;8u V  

0 100 200 300 400 500 600 700 800 900
2

3

4

5

6

7

8

Control action - voltage

t [s]

u
(k

) 
[V

]

0 100 200 300 400 500 600 700 800 900
0

0.05

0.1

0.15

0.2

0.25

Liquid levels in tanks

t [s]

h
2
(k

) 
[m

]

 

 

desired value

1st tank

2nd tank

 

Fig. 4 Time responses of Hydraulic system laboratory model predictive 

control with nonlinear predictor of system’s free response. 

By comparison with results published in [8] we can allege that 

using the nonlinear predictor in dynamical systems predictive 

control brings better results than with the linear predictor. 

Especially in control action periodicity and overshooting the 

desired value by controlled quantity. 
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Fig. 5 Time responses of nonlinear predictive control of Hydraulic system 

laboratory model 

VI. CONCLUSION 

We mentioned the basic principle and design of predictive 

control algorithms with linear predictor. We also introduced 

two modifications of basic principle with using the nonlinear 

predictor, which we programmed and tested in laboratory 

model control. Based on presented results we can consider 

modified algorithms as suitable for dynamic systems control.  

ACKNOWLEDGMENT 

This work has been supported by the Scientific Grant 

Agency of Slovak Republic under project Vega No.1/0286/11 

Dynamic Hybrid Architectures of the Multiagent Network 

Control Systems (70%). This work is also the result of the 

project KEGA 021TUKE-4/2012 (30%).  

REFERENCES 

[1] J. Roubal, “Predictive controller”, (in Czech), (Examples for exercises – 

Modern Control Theory). Available on the internet: 

<http://support.dce.felk.cvut.cz/pub/roubalj/teaching/MTR/seminars/M

TR_cv8_mpc.pdf>. 

[2] M. Fikar, “Predictive Control – An Introduction”,  Bratislava: 

Slovenská technická univerzita - FCHPT, 1999. 

[3] K. Belda, J. Böhm, M. Valášek, “Model-based control for parallel robot 

kinematics”, Proceedings of the 3rd International Congress on 

Mechatronics. MECH2K4, p. 1-15, 2004. 

[4] L. F. Shampine, “Numerical Solution of Ordinary Differential 

Equations”, Chapman & Hall, New York, 1994B.  

[5] Kouvaritakis, M. Cannon, “Nonlinear Predictive Control, theory and 

practice,” IET Control Engineering series 61, ISBN 978-0-85296-984-7 

[6] R. Fletcher, “Practical methods of optimization, second edition”, Wiley, 

2000, ISBN 978-0471494638. 

[7] Š. Jajčišin, “Verification of Control Algorithms with DDE 

Communication on Real Hydraulic System”, in: SCYR 2011 : 11th 

Scientific Conference of Young Researchers of Faculty of Electrical 

Engineering and Informatics Technical University of Košice : proc. - 

Košice : FEI TU, 2011 S. 388-391. - ISBN 978-80-553-0644-5. 

[8] Š. Jajčišin, A. Jadlovská, “Laboratory model of Hydraulic System 

Control” (in Slovak), in: Electroscope – online journal for 

Electrotechnics, year 2011, No. III. ISSN 1802-4564, Available on the 

internet: 

http://147.228.94.30/index.php?option=com_content&view=article&id

=280:riadenie-laboratorneho-modelu-hydraulickeho-systemu-

&catid=34:cislo-32011-&Itemid=48. 

http://147.228.94.30/index.php?option=com_content&view=article&id=280:riadenie-laboratorneho-modelu-hydraulickeho-systemu-&catid=34:cislo-32011-&Itemid=48
http://147.228.94.30/index.php?option=com_content&view=article&id=280:riadenie-laboratorneho-modelu-hydraulickeho-systemu-&catid=34:cislo-32011-&Itemid=48
http://147.228.94.30/index.php?option=com_content&view=article&id=280:riadenie-laboratorneho-modelu-hydraulickeho-systemu-&catid=34:cislo-32011-&Itemid=48

