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Abstract— The purpose of this paper is to perform an in-
depth analysis of the rotary single inverted pendulum 
system using a Simulink block library designed by the 
authors of this paper – the Inverted Pendula Modeling and 
Control (IPMaC), which offers comprehensive program 
support for modeling, simulation and control of classical 
and rotary inverted pendula systems. With the aid of 
appropriate function blocks, GUI applications and 
demonstration schemes from the IPMaC, the rotary single 
inverted pendulum system is analyzed, modeled and 
successfully stabilized in the unstable inverted position. 

Keywords—rotary single inverted pendulum, custom block 
library, automatic model generation, state-feedback control  

I. INTRODUCTION 

Inverted pendula systems (IPS) represent a significant 
class of nonlinear underactuated mechanical systems, 
well-suited for the verification and practice of ideas 
emerging in control theory and robotics. Stabilization of a 
pendulum rod in the unstable upright position is 
considered a benchmark control problem which has been 
solved by attaching the pendulum to a base that moves in 
a controlled linear manner (classical IPS) or in a rotary 
manner in a horizontal plane (rotary IPS). 

The Inverted Pendula Modeling and Control (IPMaC) 
is a structured Simulink block library which was 
developed by the authors of this paper and provides 
complex software support for the analysis and control of 
both classical and rotary IPS [1][2]. Strong emphasis is 
placed on the generalized approach to system modeling 
[1][3], allowing the library to handle systems which differ 
by the number of pendulum links attached to the base, 
such as single [2][3], double [2][4] and triple IPS.  

As an underactuated, unstable and yet controllable 
system, the rotary single inverted pendulum has been an 
attractive testbed system for linear and nonlinear control 
law verification ever since it was introduced to feedback 
control community by Katsuhisa Furuta, Professor at the 
Tokyo Institute of Technology [5]. This paper aims to 
present an overview of this popular system, covering 
every significant step from mathematical model 
derivation to examples of control algorithm design. The 
individual steps of the process will be demonstrated using 
suitable function blocks or GUI applications from the 

IPMaC. All simulation experiments mentioned in this 
paper can be run from the IPMaC/Demo Simulations 
section which contains links to corresponding schemes. 

II. MATHEMATICAL MODELING AND SIMULATION OF THE 

ROTARY SINGLE INVERTED PENDULUM 

The considered rotary single inverted pendulum system 
(Fig. 1) is composed of a homogenous pendulum rod 
attached to an arm which is free to rotate in a horizontal 
plane. Since the number of actuators is lower than the 
number of system links, the system is underactuated: the 
only input (the torque ( )M t applied on the arm) is used to 

control the two degrees of freedom of the system: arm 
angle ( )0 tθ  [rad] and pendulum angle ( )1 tθ [rad].  

A. Automatic Derivation of Motion  Equations 

Manual, step-by-step derivation of motion equations is 
the prevailing approach to inverted pendula modeling 
which can be found in the accessible works, e.g.[6][7][8]. 
However, in this paper, the mathematical model of the 
system will be generated automatically using the Inverted 
Pendula Model Equation Derivator (Fig. 2), a MATLAB 
GUI application from the IPMaC. The Derivator 
generates the motion equations for user-chosen types of 
IPS (classical/rotary, single/double) with the aid of an 
original procedure of mathematical model derivation for 
the generalized (n-link) system which was implemented 
in MATLAB using Symbolic Math Toolbox [1][3]. 

 

Fig. 1. Rotary single inverted pendulum – scheme and parameter 
nomenclature. 



 
Fig. 2. Automatic derivation of the rotary single inverted pendulum 

motion equations using  Inverted Pendula Model Equation Derivator. 

As it can be seen in the preview of the Derivator 
window (Fig. 2), the mathematical model of the rotary 
single inverted pendulum system is composed of two 
second-order nonlinear differential equations which 
respectively describe the dynamic behavior of the rotary 
arm and the pendulum. If the equations are rearranged 
into the so-called standard minimal ODE (ordinary 
differential equation) matrix form: 

 ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ),t t t t t t t+ + =M θ θ N θ θ θ P θ Vɺɺ ɺ ɺ ,   (1) 

given that ( ) ( ) ( )( )0 1

T
t t tθ θ=θ , the following mathematical 
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where 0m , 1m  stand for the masses of the arm and the 

pendulum, 0l , 1l  are their respective lengths, 0δ , 1δ  are 

the damping constants in the joints of the arm and 

pendulum, 2
0 0 0

1

3
J m l= and 2

1 1 1

1

3
J m l=  are the moments of 

inertia of the arm and pendulum with respect to their 
pivot points and ( )M t  is the input torque applied upon 

the rotary arm. The generated model will hereafter be 
referred to as a torque model of a rotary single inverted 
pendulum system, to distinguish it from a voltage model 
of the system, which will be presented later. 

A number of differences have been noticed between 
the generated model and the models in the referenced 
works. The general procedure used by the Derivator 
assumes that all motion of the system is bound to a 
standard right-handed three-dimensional coordinate 
system (and most differences can be attributed to the 
choice of coordinate system or angle orientation) and that 
the rotary motion of the pendulum takes place in a 

vertical plane that is always perpendicular to both the 
horizontal arm plane and the arm itself – as a result, the 
actual plane the pendulum is rotating in is different in 
every instant, which  brings  additional complexity as 
well as high accuracy to the generated mathematical 
model.  In the referenced works, the pendulum is often 
assumed to be rotating in a constant plane [6][7] or the 
rotary motion of the arm is neglected altogether [8]. 

B. Open-Loop Dynamical Analysis 

The Inverted Pendula Models sublibrary of the IPMaC 
contains a library block Rotary Single Inverted Pendulum 
(RSIP), which implements the mathematical model (2) 
derived above. The block is equipped with a dynamic 
block mask [2] which enables the user to edit the numeric 
parameters and initial conditions, to enable or disable the 
torque input port and to flexibly adjust the number of the 
block’s output ports  (Fig. 3). 

The open-loop dynamical behavior of the rotary single 
inverted pendulum system was verified in a simulation 
experiment involving the RSIP block (Fig. 4). The system 
was actuated from an initial – upright position of the  
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Fig. 3 Open-loop dynamical analysis of the rotary single inverted 

pendulum (torque model) -  simulation setup. 
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Fig. 4. Rotary inverted pendulum (torque model) – open-loop time 

behavior of the arm and pendulum angles. 



pendulum by a torque impulse of 0,4 Nm lasting 1s. The 
numeric parameters of the simulated system were selected 
to be  0 0.5m kg= , 1 0.275m kg= , 0 0.6l m= , 1 0.5l m= , 

1
0 0.3kgsδ −= , 2 1

1 0.011458kgm sδ −= . 

Reasonable behavior of the open-loop response 
(damped oscillatory transient state, system reaching the 
stable equilibrium point with the pendulum pointing 
downward, visible backward impact of the pendulum on 
the base) means that the simulation model implemented as 
the RSIP library block can be considered accurate enough 
to serve as a reliable testbed system for linear and 
nonlinear control algorithms. 

C. Actuating Mechanism Implementation 

To provide the simulation models of IPS with a model 
of the most frequently used actuating mechanism, 
a library block DC Motor for Inverted Pendula Systems 
was included into the the Inverted Pendula Motors 
sublibrary of the IPMaC. The block implements the 
mathematical model of a brushed direct-current (DC) 
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Fig. 5 Open-loop dynamical analysis of the rotary single inverted 

pendulum (voltage model) -  simulation setup. 
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Fig. 6 Rotary single inverted pendulum (voltage model) – open-loop 
time behavior of the arm and pendulum angles. 

motor in two alternative forms depending on the type of 
system (classical / rotary). For rotary IPS, the DC motor 
is modeled as the following voltage-to-torque conversion 
relationship, derived in [1]: 

  ( ) ( ) ( )
2 2

0

m g m g

a

a a

k k k k
M t V t t

R R
θ= − ɺ .         (3) 

where ( )aV t  is the input voltage applied to the motor, mk  

is the motor torque constant, equal in value to the back 
EMF constant, gk  is the gear ratio, and aR  is the 

armature resistance. 
If the DC motor model is appended to an inverted 

pendulum system (i.e. (3) is substituted into (2)),  
a voltage model of the system is obtained (Fig. 5). 
In Fig. 6, the response of the rotary inverted pendulum 
voltage model to an impulse signal of 1V lasting 1s is 
depicted. The numeric parameters of the DC motor 
simulation model were borrowed from the motor featured 
in the series of popular laboratory models of inverted 
pendula systems issued by Quanser Academic [9].  

III.  STABILIZATION OF THE ROTARY SINGLE INVERTED 

PENDULUM VIA STATE-FEEDBACK CONTROL TECHNIQUES 

The principal control objective was defined as the 
stabilization of the system in the unstable equilibrium, i.e. 
in the vertical upright (inverted) position of the 
pendulum. In other words, the pendulum needs to be 
balanced around the upright position after an initial 
deflection (nonzero initial conditions) and every time-
constrained (impulse) or permanent (step) disturbance 
input signal has to be compensated. Meanwhile, the arm 
must track a desired reference trajectory. Linear state-
feedback control was emphasized as the principal control 
technique because control of several degrees of freedom 
at once can only be ensured if they are all taken into 
consideration. Linear approximation is a necessary 
prerequisite for this approach to control. 

The additional problem of swinging the pendulum up 
from the pendant to the upright position leads to a hybrid 
control setup with two additional components: a swing-up 
controller and a transition (switching) mechanism, which 
intercepts the pendulum when it reaches the upright 
position and switches to balancing control. A control 
strategy which ensures successful swing-up and 
stabilization of both the classical and rotary single 
inverted pendulum system was presented in [10]. 

A. Automatic Linear Approximation of the Rotary 
Inverted Pendulum System 

After the rearrangement of the derived motion 
equations into the minimal ODE form (1), it is possible to 
express the rotary single inverted pendulum model using 
the canonic form of the standard nonlinear state-space 
description: 

  ( ) ( )( )
( ) ( )( )

( ) , ,

( ) , ,

t t u t t

t t u t t

=
=

x f x

y g x

ɺ
,          (4) 

by defining the state vector as ( ) ( ) ( )( )t t t=x θ θɺ  and 

isolating the second derivative ( )tθɺɺ from (1). 



 

Fig. 7 Obtaining the state-space matrices of the rotary single inverted 
pendulum via the Inverted Pendula Model Linearizator & Discretizer. 

The general procedure implemented by the Inverted 
Pendula Model Equation Derivator uses an assumption 
which defines the “all-upright” equilibrium as 

( ) T
St = =x x 0 . If the input ( ) 0Su t u= = , then the 

continuous-time state-space description of the linearized 
inverted pendulum system has the form: 

  
( ) ( ) ( )
( ) ( ) ( )
t t u t
t t du t

= +
= +

x Ax b
y Cx
ɺ

.          (5) 

In this paper, the A, b, C, d matrices which make up 
the linearized state-space model (5) were obtained from 
the Inverted Pendula Model Linearizator & Discretizer, a 
MATLAB GUI application which generates the matrices 
in (5) by expanding (4) into the Taylor series around 
a given equilibrium point with the higher-order terms 
neglected (Fig. 7), and also returns the matrices of the 
discretized state-space model 

  
( ) ( ) ( )
( ) ( ) ( )

1i i u i
i i du i
+ = +
= +

x Fx g
y Cx

.          (6) 

if the sampling period constant has been provided. 
Using the numeric parameters from the open-loop 
simulations in section II, the following continuous-time 
state-space matrices of the linearized rotary single 
inverted pendulum voltage model were generated: 
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The system eigenvalues were computed to be 

( )0 6,404 9,096 1,79− − , which implies that the linear 

approximation of rotary single inverted pendulum in the 
upper equilibrium is an unstable system with first-degree 
astatism. The system was next discretized with the 
sampling period of 0,01sT s=  and the following discrete-

time state-space matrices were obtained: 

1 0,0007 0,0098 0

0 1,0027 0,0004 0,01

0 0,1402 0,9652 0,0017

0 0,5456 0,0624 0,9935
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B. State-Feedback Control with a State Estimator 

The Inverted Pendula Control sublibrary of the IPMaC 
provides complex software support for the linear state-
feedback controller design. It contains several dynamic-
masked function blocks which were described in [2] in 
terms of their structure and user interface (Fig. 8). 

The State-Feedback Controller with Feedforward Gain 
(SFCFG) library block implements the standard state-
feedback control law which is calculated either from the 
continuous-time state-space description:  

( ) ( ) ( ) ( ) ( ) ( ) ( )R ff u ff uu t u t u t d t t k w t d t= + + = − + +kx    (7) 

or from the discrete-time linear state-space description: 

( ) ( ) ( ) ( ) ( ) ( ) ( )R ff u D ffD uu i u i u i d i x i k w i d i= + + = − + +k (8)

where k / Dk  is the feedback gain which brings the state 

vector ( )tx  / ( )ix  into the origin of the state space, kff / 

kffD is the feedforward (setpoint) gain which makes the 
output track the reference command and ( )ud t  / ( )ud i  is 

the unmeasured disturbance input [1] [2][3] [4]. To match 
an additional control objective (initial deflection of the 
pendula, compensation of disturbance signal, tracking a 
reference position of the arm or a combination of the 
three), the block’s appearance may be adjusted by 
optional enabling or disabling of the nonzero setpoint 

input ( )w t  / ( )w i and the disturbance input  ( )ud t  / ( )ud i . 

The method to determine the feedback gain k / Dk  can be 

selected from between the pole-placement algorithm and 
the linear quadratic (LQ) optimal control method [1][11]. 

Due to measurement limitations, it is often impossible 
to retrieve the whole state-space vector at every time 
instant. The Luenberger Estimator (LE) block provides 
the controller block with a complete, reconstructed state 
vector by evaluating a model of the original discrete-time 
system in the structure: 

 ( ) ( ) ( ) ( ) ( )( )ˆ ˆ1i i u i i i+ = + + −x Fx g L y Cx         (9) 

where L  is the estimator gain matrix, ( )ˆ ix is the 

reconstructed state vector and the estimation error 

( ) ( ) ( )ˆi i i= −x x xɶ  is being minimized. 
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Fig. 8 State-feedback control of the rotary single inverted pendulum 
(voltage model) – general simulation setup. 
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Fig. 9 Rotary single inverted pendulum – simulation results for LQR 

control with feedforward gain, compared to pole-placement. 

Fig. 9 illustrates the results of applying continuous-
time and discrete-time LQR state-feedback to the rotary 
single inverted pendulum voltage model; RSIP, SFCFG 
and LE blocks were employed in the corresponding 
simulation scheme.  The control objective was to make 
the arm rotate for a total of half a circle and stop every 
quarter-turn to stabilize before returning to its initial 
position; the pendulum had to be kept upright all the time. 
The weight matrices of both the standard continuous-time 
LQ functional: 

( ) ( ) ( ) ( ) ( )( )1

2
0

T T
LQR R RJ t t t u t ru t dt

∞

= +∫ x Qx  (10) 

and the discrete-time LQ functional: 

( ) ( ) ( ) ( ) ( )
1

0

N
T T

LQR R R

i

J i i i u i ru i
−

=

= +∑x Qx  (11) 

were set to ( )100 20 20 0diag=Q , 1r = . 

Moreover, it was assumed that the arm and pendulum 
angles would be directly measurable while the velocities 
would need to be estimated; the vector of estimator poles 
was set to ( )0.1 0.2 0.1 0.2 0.1 0.3i i+ − . 

It is obvious that the response of the discrete LQR 
algorithm closely follows that of the continuous 
algorithm, and there is no steady-state error in either case. 
The simulation results were compared with those of 
continuous pole-placement control: the vector of desired 
closed-loop poles was set to ( )2 3 3 10i i− − + − − − . 

To enhance the performance of the LQR controller, 
optimal weight matrices were sought. After setting 1r = , 
the positive real diagonal elements of the Q weight matrix 
were modified and the influence of each candidate matrix 
on the overall performance of the system was verified 
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Fig. 10 Rotary single inverted pendulum - evaluation of the influence of 

the Q weight matrix on the performance of the system. 

in the discrete-time LQR simulation setup for the rotary 
inverted pendulum voltage model. 

The results of two extreme cases of selecting Q:   

( )1 500 0 20 0diag=Q , ( )2 10 120 20 0diag=Q  

are depicted in Fig. 10. For 1Q , the arm is fast to reach 

the reference position but the pendulum overshoot is far 
from desired. If 2Q  is selected, the pendulum swings are 

well within the limits, however the arm’s rise time is 
unacceptably slow. It has therefore been concluded that 
the optimal time behavior of the arm and the pendulum 
are two conflicting requirements which cannot be 
satisfied at once. Any successful tuning of weight 
matrices must therefore result in a reasonable 
compromise between the quick rise time of the base and 
low overshoot of the pendulum. 

C. State-Feedback Control with Permanent Disturbance 
Compensation 

Applying state-feedback control with feedforward gain 
on a system is insufficient if the steady-state effect of a 
permanent disturbance input needs to be compensated. 
The structure of the State-Feedback Controller with 
Summator (SFCS) block implements a summator term 

( )v i  which sums up all past error values [12]. This 

ensures that the system output will track the changes in 
the reference command and eliminate the influence of 
permanent disturbances. The evaluated control law is 
specified as 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2R ff Su i u i u i u i i k w i v i= + + = − + +k x  (12) 

where w(i) is the reference command and 1k , 2k  are gain 

matrices which are computed from a matrix structure 
derived in  and implemented into the SFCS block. 
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Fig. 11 Rotary single inverted pendulum – simulation results for LQR 

control with a summator. 

The control law (12) was verified for the rotary single 
inverted pendulum voltage model and the weight matrices 
of the standard discrete-time LQ functional (11) were set 
to ( )500 0 20 0diag=Q , 1r = . The results were 

compared to those of a conventional state-feedback 
controller using the same values of weight matrices. 
A constant disturbance input (5V for the first controller, 
1V for the second) was present in both simulations. To 
compensate for measurement limitations, the LE block 
was included in both schemes, with the estimator poles 
set to the same values as in section III/B. 

As it can be seen in Fig. 11, the conventional LQR 
controller fails to track the reference trajectory without 
producing steady-state error, but the permanent 
disturbances are successfully compensated by a LQR 
algorithm with a summator included in the control 
structure. 

IV.  CONCLUSION 

The purpose of this paper was to present a 
comprehensive approach to the modeling and control of 
the rotary single inverted pendulum system. Inverted 
Pendula Modeling and Control, a custom-designed 
Simulink block library developed by the authors of the 
paper, was used as a software framework for all covered 
issues which included model derivation and open-loop 
analysis, linearization and state-feedback control 
algorithm design. 

The library provided suitable function blocks to support 
every step of the process (e.g. a pre-prepared simulation 
model of the rotary single inverted pendulum system or a 
detailed state-feedback controller block) as well as several 
innovative applications with graphical user interface. One 
of these was used to derive the mathematical model for 
the selected inverted pendulum system in form of 
symbolic equations of motion, and the other performed the 

automatic linear transformation of the system in a selected 
equilibrium point. In these applications, great practical 
potential of the symbolic mathematical software was 
demonstrated. 

The IPMaC block library enhances the capabilities of 
the MATLAB/Simulink program environment by providing 
means for modeling and control of an important class of 
nonlinear mechanical systems. It can therefore be 
considered as a meaningful contribution to modeling and 
control education at technical universities. 
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