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Abstract— The purpose of this paper is to perform an in-  IPMaC. All simulation experiments mentioned in this
depth analysis of the rotary single inverted pendulm  paper can be run from th®PMaC/Demo Simulations

system using aSimulink block library designed by the  gection which contains links to corresponding sabem
authors of this paper — thelnverted Pendula Modeling and

Control (IPMaC), which offers comprehensive program ||
support for modeling, simulation and control of classical
and rotary inverted pendula systems. With the aid b

appropriate function blocks, GUI applications and . . .
demonstration schemes from thd PMaC, the rotary single The consideredotary single inverted pendulum system

inverted pendulum system is analyzed, modeled and (Fig- 1) is composed of a homogenous pendulum rod
successfully stabilized in the unstable inverted ition. attached to an arm which is free to rotate in azootal

_ _ plane. Since the number of actuators is lower ttien
_Keywords—rotary single inverted pendulum, custom block  number of system links, the system is underactuaied
library, automatic model generation, state-feedbaclkontrol only input (the torquem (t) applied on the arm) is used to

MATHEMATICAL MODELING AND SIMULATION OF THE
ROTARY SINGLE INVERTED PENDULUM

control the two degrees of freedom of the systerm a

| INTRODUCTION angle g,(t) [rad] and pendulum anglé(t) [rad].

Invertedpendulasystems (IPS) represent a significant
class of nonlinear underactuated mechanical systemd. Automatic Derivation of Motion Equations
well-suited for the verification and practice ofeab Manual, step-by-step derivation of motion equatisns
emerging in control theory and robotics. Stabil@maiof a  the prevailing approach to inverted pendula modelin
pendulum rod in the unstable upright position iswhich can be found in the accessible works, e. /]
considered a benchmark control problem which hasnbe However, in this paper, the mathematical modelheaf t
solved by attaching the pendulum to a base thaesav system will be generatealitomaticallyusing theinverted
a controlled linear mannecléssical IP$ or in a rotary  Pendula Model Equation DerivatdFig. 2), a MATLAB
manner in a horizontal planeoary IPS. GUI application from the IPMaC. The Derivator

The Inverted Pendula Modeling and Control (IPMaC) generates the motion equations for user-chosers tgpe
is a structured Simulink block library which was IPS (classical/rotary, single/double) with the aitl an
developed by the authors of this paper and providesriginal procedure of mathematical model derivation
complex software support for the analysis and cbmif  the generalizedntlink) system which was implemented
both classical and rotary IPS [1][2]. Strong emphas in MATLAB using Symbolic Math Toolbop][3].
placed on the generalized approach to system nmageli ;
[1][3], allowing the library to handle systems whidiffer A
by the number of pendulum links attached to theepas
such as single [2][3], double [2][4] and triple IPS

As an underactuated, unstable and yet controllable
system, theotary single inverted pendulutmas been an
attractive testbed system for linear and nonlireatrol
law verification ever since it was introduced tedback a
control community by Katsuhisa Furuta, Professothat 7" o
Tokyo Institute of Technology [5]. This paper aitts
present an overview of this popular system, cogerin
every significant step from mathematical model
derivation to examples of control algorithm desigihe
individual steps of the process will be demonsttatsing

suitable function blocks or GUI applications fromet Fig. 1. Rotary single inverted pendulum — schemparameter
nomenclature
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e P = vertical plane that is always perpendicular to btita
e horizontal arm plane and the arm itself — as altethe
B actual plane the pendulum is rotating in is differén
every instant, which brings additional complexdsg
well as high accuracy to the generated mathematical
model. In the referenced works, the pendulum terof
assumed to be rotating in a constant plane [6]f7ihe
rotary motion of the arm is neglected altogethér [8

B. Open-Loop Dynamical Analysis

The Inverted Pendula Modelsublibrary of thdPMaC
contains a library blocRotary Single Inverted Pendulum
(RSIB, which implements the mathematical model (2)
derived above. The block is equipped with a dynamic
block mask [2] which enables the user to edit thmeric
parameters and initial conditions, to enable oaldis the

As it can be seen in the preview of tBerivator torque input port and to flexibly adjust the numbéithe
window (Fig. 2), the mathematical model of ttmary  block’s output ports (Fig. 3).
single inverted pendulum systeis composed of two  The open-loop dynamical behavior of the rotary lging
second-order nonlinear differential equations whichinverted pendulum system was verified in a simafati
respectively describe the dynamic behavior of thtary  experiment involving th&SIPblock (Fig. 4). The system
arm and the pendulum. If the equations are reaesing Was actuated from an initial — upright positiorttue
into the so-calledstandard minimal ODE (ordinary
differential equationmatrix form:

M (0(t)d(t) + N (0(0).0(1)6(t)+ P(o(t) =V (1), @ St ———])
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Fig. 2. Automatic derivation of the rotary singteérted pendulum
motion equations usingnverted Pendula Model Equation Derivator.
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where my, m, stand for the masses of the arm and theg

S 40
pendulum,ly, |, are their respective lengthd,, J, are “
the damping constants in the joints of the arm and

Arm

10

pendulum,]J, :%mjlgand J, ::—13n1lf are the moments of

GO 2 4 6

inertia of the arm and pendulum with respect torthe
inOt points andM (t) is the input torque app“ed upon 0Open-luopAnalysisofRutelrySingIeInverted Pendulum (Torque Model) - Pendulum Angle
the rotary arm. The generated model will hereafter
referred to as #&orque modelof a rotary single inverted
pendulum system, to distinguish it fronvaltage model
of the system, which will be presented later.
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A number of differences have been noticed between g~~~ f{r -~~~ B e
the generated model and the models in the refedence £, | ]
works. The general procedure used by therivator B ! ! ! ! ! !
assumes that all motion of the system is bound to a 2 -——=-{§- "+~~~ e e S e R
standard right-handed three-dimensional coordinate _ | N R S
system (and most differences can be attributedhéo t ’ Csmumonimers

choice of Coordl.nate system or angle orientationy ma? Fig. 4. Rotary inverted pendulurtofque modgl— open-loop time
the rotary motion of the pendulum takes place in a behavior of the arm and pendulum angles.



pendulum by a torque impulse of 0,4 Nm lasting Tl
numeric parameters of the simulated system weeztes
to be m, =0.5kg, m =0.275%g, I, =0.6m, |, =0.5m,

J, =0.%gs", 4 =0.011458gnT S*.

Reasonable behavior of the open-loop
(damped oscillatory transient state, system reagchiie
stable equilibrium point with the pendulum pointing
downward, visible backward impact of the pendulum o
the base) means that the simulation model implesdeas

response

motor in two alternative forms depending on theety
system (classical / rotary). For rotary IPS, the mGtor
is modeled as the following voltage-to-torque casian
relationship, derived in [1]:

K,

M<t>=k;fgva<t>— 20,0

whereV, (t) is the input voltage applied to the motéy,
is the motor torque constant, equal in value tokhek

(3)

the RSIPlibrary block can be considered accurate enougEMF constant, k, is the gear ratio, andR, is the

to serve as a reliable testbed system for linea an

nonlinear control algorithms.

C. Actuating Mechanism Implementation

To provide the simulation models of IPS with a mode

of the most frequently used actuating mechanis
a library blockDC Motor for Inverted Pendula Systems
was included into the thénverted Pendula Motors
sublibrary of thelPMaC. The block implements the
mathematical model of a brushed direct-current (DC)
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Fig. 5 Open-loop dynamical analysis of the rotamgle inverted
pendulum (voltage model) - simulation setup.
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Fig. 6 Rotary single inverted pendulum (voltage eipe open-loop
time behavior of the arm and pendulum angles.

m

armature resistance.

If the DC motor model is appended to an inverted
pendulum system (i.e. (3) is substituted into (2)),
avoltage modelof the system is obtained (Fig. 5).
In Fig. 6, the response of the rotary inverted péuna
voltage model to an impulse signal of 1V lastingids
depicted. The numeric parameters of the DC motor
simulation model were borrowed from the motor featu
in the series of popular laboratory models of iteer
pendula systems issued Quanser Academif®].

Ill. STABILIZATION OF THE ROTARY SINGLE INVERTED
PENDULUM VIA STATE-FEEDBACK CONTROL TECHNIQUES

The principal control objective was defined as the
stabilization of the system in the unstable equilii, i.e.
in the vertical upright (inverted) position of the
pendulum In other words, the pendulum needs to be
balanced around the upright position after an dhiti
deflection (nonzero initial conditions) and eveiyné-
constrained (impulse) or permanent (step) disturban
input signal has to be compensated. Meanwhile athe
must track a desired reference trajectdrinear state-
feedback controlvas emphasized as the principal control
technique because control of several degrees efidm
at once can only be ensured if they are all tak#a i
consideration. Linear approximation is a necessary
prerequisite for this approach to control.

The additional problem of swinging the pendulum up
from the pendant to the upright position leads tylarid
control setup with two additional components: angaiip
controller and a transition (switching) mechanisvhjch
intercepts the pendulum when it reaches the upright
position and switches to balancing control. A cohtr
strategy which ensures successful swing-up and
stabilization of both the classical and rotary kng
inverted pendulum system was presented in [10].

A. Automatic Linear Approximation of the Rotary
Inverted Pendulum System

After the rearrangement of the derived motion
equations into the minimal ODE form (1), it is pbés to
express the rotary single inverted pendulum modiigu
the canonic form of the standard nonlinear statesp
description:

X(t) = £ (x(t).u(t).1)
y(® = g(x(t).u(t) 1)
by defining the state vector ax(t):(a(t) ﬂ(t)) and

(4)

isolating the second derivati\é(t) from (1).



Fig. 7 Obtaining the state-space matrices of tterysingle inverted
pendulum via thénverted Pendula Model Linearizator & Discretizer.

The general procedure implemented by theerted
Pendula Model Equation Derivataises an assumption
which defines the “all-upright” equilibrium as

x(t)=xs=0". If the input u(t)=us=0, then the

continuous-time state-space description of thealiized

inverted pendulum system has the form:
x(t) = Ax(t) +bu(t) 5)
y(t) = Cx(t) +du(t) -

In this paper, thé\, b, C, d matrices which make up
the linearized state-space model (5) were obtafread
the Inverted Pendula Model Linearizator & Discretizer
MATLAB GUI application which generates the matrices
in (5) by expanding (4) into the Taylor series au
a given equilibrium point with the higher-order rtex
neglected (Fig. 7), and also returns the matrideth®
discretized state-space model

x(i+1) =Fx(i)+aqu(i) ©)
y(i) = Cx(i) +duf(i)

if the sampling period constant has been provided.

B. State-Feedback Control with a State Estimator

Thelnverted Pendula Contradublibrary of thdPMaC
provides complex software support for theear state-
feedbackcontroller design.lt contains several dynamic-
masked function blocks which were described inif2]
terms of their structure and user interface (Fjg. 8

The State-Feedback Controller with Feedforward Gain
(SFCFQ library block implements the standard state-
feedback control law which is calculated eithemirthe
continuous-time state-space description:

u(t) = e () + ue (9 + d () = ~x(J+ ke 3+ d() (@)
or from the discrete-time linear state-space dpson:

u(i) =ug (i) +uy (i) +dy (i) = =k ox(i) + k oW(i) + d, (i) (8)
wherek /k; is thefeedback gairwhich brings the state
vector x(t) /x(i) into the origin of the state spade,/

kip is thefeedforward (setpoint) gaimvhich makes the
output track the reference command angt) /d,(i) is

the unmeasured disturbance input [1] [2][3] [4]. Match

an additional control objective (initial deflectiarf the
pendula, compensation of disturbance signal, tracki
reference position of the arm or a combination la# t
three), the block’s appearance may be adjusted by
optional enabling or disabling of the nonzero setpo

input w(t) /w(i) and the disturbance inpud,(t) /d, (i)

The method to determine the feedback daitk, can be

selected from between the pole-placement algorainoh
the linear quadratid Q) optimal control method [1][11].
Due to measurement limitations, it is often impblgsi
to retrieve the whole state-space vector at eveng t
instant. TheLuenberger EstimatofLE) block provides
the controller block with a complete, reconstrucstate
vector by evaluating a model of the original disereéme

Using the numeric parameters from the open-looystem in the structure:

simulations in section I, the following continuctise
state-space matrices of the linearized rotary singl
inverted pendulum voltage model were generated:

0 0 1 0 0
acl0 O 0 1 | o
10 -14,3243 - 35435 0,243 | 0,1288
0 552138 6,3783- 0,9 —0,231
The system eigenvalues were computed to be

(0 6,404 -9,096 - 1,79, which implies that the linear

approximation of rotary single inverted pendulumttie
upper equilibrium is an unstable system with fadsgree
astatism. The system was next discretized with th
sampling period off, =0,01s and the following discrete-

time state-space matrices were obtained:

1 -00007 00098 O 0,000006
|0 10027 00004 001 |-000001
“|o -01402 09652 0,001 | 0,013

0 05456 00624 0,99 -0,0023

%(i+1)=Fx()+au(i)+L(v()-cx()  ©
where L is the estimator gain matrixX(i)is the

reconstructed state vector and the estimation error
%(i)=x(i)-x(i) is being minimized.

Use Linearizztorto obtan modfed matices 2 chenge nparametrs ocaurs. ~>>
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Fig. 8 State-feedback control of the rotary singlerted pendulum
(voltage model) — general simulation setup.
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Fig. 9 Rotary single inverted pendulum — simulatiesults for LQR Fig. 10 Rotary single inverted pendulum - evaluatbthe influence of
control with feedforward gain, compared to poleeplaent. the Q weight matrix on the performance of the syste

Fig. 9 illustrates the results of applying continge in the discrete-time LQR simulation setup for tio¢ary
time and discrete-time LQR state-feedback to thiaryo inverted pendulum voltage model.
single inverted pendulum voltage modBISIER, SFCFG The results of two extreme cases of selectipg

and LE blocks were employed in the correspondinngzdiag(5oo 0 20 () QZ:diag(lo 120 20 9)
simulation scheme. The control objective was tdena

the arm rotate for a total of half a circle andpsevery ~are depicted in Fig. 10. Fd@y, the arm is fast to reach
quarter-turn to stabilize before returning to ititial  the reference position but the pendulum overshedar
position; the pendulum had to be kept uprightlaltime.  from desired. IfQ, is selected, the pendulum swings are
The weight matrices of both the standard contintone  well within the limits, however the arm’s rise tinig

LQ functional: unacceptably slow. It has therefore been conclutiad
L9 the optimal time behavior of the arm and the pemcahul
Jior(t) =‘I(XT (t)x(t) +up(9ru R(t))dt (10) are two conflicting requirements which cannot be
>0 satisfied at once. Any successful tuning of weight
and the discrete-time LQ functional: matrices must therefore result in a reasonable
N1 compromise between the quick rise time of the lzage
Jier(i) = DX (1)Qx(i) +u g (i )ru i) (11) low overshoot of the pendulum.
were set toQ |=odiag(100 20 20 () r=1. C. State-Feedback Control with Permanent Disturbance

Compensation

Applying state-feedback control with feedforwardrga
on a system is insufficient if the steady-stateeeffof a

Moreover, it was assumed that the arm and pendulum
angles would be directly measurable while the vigex:

would need to be estimated; the vector of estimpotes permanent disturbance input needs to be compensated

was settg0.1 02+ 0L 02 a1 0. The structure of theState-Feedback Controller with
It is obvious that the response of the discrete LQRSummator (SFCShlock implements a summator term

algorithm closely follows that of the continuous v(i) which sums up all past error values [12]. This
algorithm, and there is no steady-state errortimeeicase.

The simulation results were compared with those o

continuous pole-placement control: the vector dfirdel . .
i ) permanent disturbances. The evaluated control Bw i

closed-loop poles was set {82 -3+i -3-i -10. specified as

To enhance the performance of the LQR controller, (i) = u.(i)+ N+uo(i) = =k x(i) + i) +v(i
optimal weight matrices were sought. After setting1, u(l) UR(I) uﬁ(l) US(I) klx(l) k2vv(|) V(I) (12)_
the positive real diagonal elements of @eveight matrix ~ Wherew(i) is the reference command akg k, are gain
were modified and the influence of each candidatérimi  matrices which are computed from a matrix structure
on the overall performance of the system was \egtifi derived in and implemented into tB&CSblock.

nsures that the system output will track the ckarig
he reference command and eliminate the influenfce o
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Fig. 11 Rotary single inverted pendulum — simulatiesults for LQR
control with a summator.

The control law (12) was verified for the rotarypglie
inverted pendulum voltage model and the weight icesr
of the standard discrete-time LQ functional (11yaveet
to Q=diag(500 0 20 Q, r=1. The results were

automatic linear transformation of the system sekected
equilibrium point. In these applications, great qpical
potential of the symbolic mathematical software was
demonstrated.

The IPMaC block library enhances the capabilities of
the MATLAB/Simulinkprogram environment by providing
means for modeling and control of an important <lak
nonlinear mechanical systems. It can therefore be
considered as a meaningful contribution to modetind
control education at technical universities.
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