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Abstract: The aim of this paper is to provide a complex vigwthe modeling and simulation of
inverted pendula systems. Crucial modeling procesiisuch as the derivation of differential
motion equations for inverted pendula systems gnubslic linearization with respect to a given
equilibrium point are presented in form of symboWATLAB algorithms, generalized for a
system ofn inverted pendula. The algorithms are then usedeidve accurate mathematical
models of a single and double inverted pendulumvelsas their linear approximations. The paper
then presentiverted Pendula Modeling and Control, a thematic Simulink block library designed
by the authors. As part of the library, the opesplalynamics of the models is analyzed in a series
of simulation experiments and a set of suitabléestpace control algorithms that stabilize the
pendulum in the inverted position is designed ampsrted by a set of library blocks.

Keywords: nonlinear dynamical system, system of inverteddpé&n) generalized modeling, state-
space control, MATLAB/Simulink block library

1 INTRODUCTION

Inverted pendula systems represent a significamugof mechanical systems used in control
education with a variety of practical applicatiomsluding (see [Jadlovska, 2009], [Sultan, 2004]):

e simulation of the unstable system of a human obtiokupper limb if the center of pressure is
placed below its center of gravity

« modeling a human or a robot standing upright

< simulation of a space shuttle or a rocket takirfg of

« missile guidance, if thrust is actuated at thedrotof a tall vehicle

Thorough physical analysis is generally requiredobdain mathematical expressions that
model the real system dynamics with such accutaayit is possible to use them as substitutesse ca
a laboratory model is unavailable. Despite the that inverted pendula analytical identification is
considered a well-explored matter and the equatibmsotion of this type of a system are standardly
included in a number of sources (e.g. [Schlegal.e2005] provides the equations for a single ilou
and triple pendulum model), a general algorithmjciwhwvould output the equations of motion for
any given number of pendula, has not yet beendotred. Since the force summation method based
on Newton’s laws of motion tends to be error-praral cannot be easily transformed into an
algorithm, this paper uses the Lagrange approapkrform the derivation of the motion equations. In
order to obtain as precise an approximation of b&l model dynamics as possible, Rayleigh
dissipation function that describes the viscougesgsdamping and friction was integrated in the
standard Euler-Lagrange equation. The biggest adgarof the Lagrange mechanics employment is
that it can be easily algorithmized into a MATLABnction (-ile).

In a similar generalized way, a linearized moddijolr is necessary for any linear feedback
controller design, is created. The use of lineartrmdlers upon nonlinear systems is justified bg th
easily verifiable assumption that the behavior 6h@ar approximation near to the equilibrium point
shows little error compared to the nonlinear odjin

Block libraries represent the object-oriented, éxflenw-driven, user-friendly problem-solving
approach within the MATLABSmulink environment. Through th&mulink Library Browser, a
number of pre-installed (Toolbox) libraries can dessed and used to solve or simulate various
scientific and technical issues by means of blagkrconnecting. Furthermore, to provide a wider
variety of problems with such user flexibility, ¢asm masked blocks may be created and grouped into
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user-designed libraries. The final section of tapgy describes a block library which was developed
to provide such software support for the simulatiod control of inverted pendula systems.

2 MATHEMATICAL MODELING

2.1 Motion Equations Derivation — General Procedure

The nonlinear mechanical SIMO systemroinverted pendula on a cart is composed ofn
homogenous, isotropic rods which are joint-bourgktber and attached to a stable moving base. The
input of such a system is the force acting uporctre the multiple, i.en+1 outputs are represented
by cart position[m] and pendula angl{ﬁ\d]. Only the cart position is directly affected by timput
force, therefore any system of inverted pendutaissidered to be under-actuated.

This section outlines the theoretical backgrousguenptions and derived formulas that led to
the creation of an algorithm which derives the ¢igna of motion for any given number of pendula
attached to acart. The algorithm was implementetb iIMATLAB under the name of
i nvpenderi v. m The number of pendula needs to be specified asitiwidbn parameter.

Throughout the derivation process, we assume that
« all motion is bound to they plane with the cart moving along the line iderticex axis, which at

the same time represents the projection of the getential energy level into the plane
» the value of every angle is determined clockwisenfthe upright position
« all parameters are indexed in the following maniteiis assigned to the catftto n represent the
individual pendula starting with the pendulum rdthehed directly to the cart
Let us first introduce a vector of generalized domates, which correspond to the system'sl
degrees of freedom, i.e. its outputs:

0(t)=(6(t) &) ... &) (1)
The Euler-Lagrange equations represent the systdegeees of freedom each and in the condensed
vector form they appear as:

d(aL(t)) aL(t) apft)_ ..
_(aé(t)j_ o) o) O Y @

dt

whereLagrange function (Lagrangian) is defined as the difference between the systéimiatic and
potential energy

L(t)= B (0(t).6(1)) - E- (6(t) (3)
Rayleigh (dissipative) function describes the viscous (friction) forces within Hystem

D(t)= D(b(t)) (4)
andQ’ (t) is the vector ofeneralized external forces acting upon the system.

From now on, we will uses, (t), s, (t) to denote the coordinates of position andt), v, t)

will denote the velocities in the direction of tages. The nomenclature of the numerical parameters
that describe the system will obey the standardeations:

m[kg] - mass of the cart € )@nd the pendula & thi=n)

l; [m] - length ofi -th pendulum

g[ms'ZJ - gravitational acceleratiomy(= 981ms 2 will be used)

o) [kgs‘lj ,[kgmzs'lj - friction coefficient of the cart against therface (= 0) / damping

constant related to the pivot pointioth pendulumi(= 1toi = n)

Construction of Lagrange motion equations:
Out of all considered subsystems, only the dynarofcthe cart is directly affected by the
external force acting upon the system. Thereftwe@yector of external forces has the following form

Q'(t)=(F) o .. of )
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Since the total energy of a multi-body system isegias the sum of energies that befit the individua
bodies, the relations that characterize a systemiokerted pendula on a cart are:

B )= Ealt) "E-0= Eq ). DO =Y D) 6)

The use of Lagrange equations therefore transfdimasprocess of deriving the motion
equations into the determination of kinetic, patnand dissipation energies for the cart and all
pendula. These need to be expressed in terms getieralized coordinates.

Energetic balance of the cart:
Assuming the cart’s motion to be linear, we cancdbe it mathematically using a single
spatial dimension. Identifying it as theaxis, the only position coordinate is denoted, gk) = 6, (t).

Therefore, the potential energy of the cart eqLEa,Lg(t):O(see assumptions in 2.1). The kinetic
energy and the dissipation function both depenthercart’s velocity:

EKO(t) = %movfo(t) = %mo‘goz(t) (7)
Dolt) =7 o0vin 1) = 5 5,62 ) ®

Energetic balance of i-th pendulum:
Let us suppose that the whole mass of a penduldnisrooncentrated in its center of gravity

(CoG) which is identical to the geometrical centerha# tod in the distance df from the pivot point.
2

The coordinates of théoG of i-th pendulum rod are hence expressed as:

(S)d (t)J | %Y ZI sing, (t ——smH( ) o
() ZI cos, t ——cosﬁ . (t)
while the velocities in the direction of the axemial:
n I .
(in (t)j ] )+ kZ:;Ika )cost, (t) 26?,(t)coseI (t) o)
vt ZI g, (t)sing, (t 4 H( )sing (t)

The potential energy of-th pendulum is defined by the height of tbaG above thex axis:

=0 6= mos, )= g 3, cow ) eosa ) e

and the kinetic energy of each pendulum is a surtwof expressions that describe the pendulum’s
translational and rotary motion:

1 1.
Exi (t) = Emviz(t)-"EJTigiz(t) (12)
where J; :1—12mili2 is the pendulum’s moment of inertia with respecttie center of gravity and

vi (t) = V3 (t)+V3 (t) is the magnitude off-th pendulum translational velocity.

The dissipation properties of theth pendulum depend quadratically on the angul&ocittes
of pendulums marked dsandi -
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8.0)-6.0) (13)

which yields D, (t)=%5ié?i2(t) if n=1.

The functions of MATLAB’s Symbolic Math Toolbox enabled us to include the above-
mentioned physical relationships in thevpenderi v. mand, furthermore, to generate a simplified
and rearranged form of the equations, equivalenth® most likely form obtained by manual
derivation. An example of the command window outpraduced byi nvpenderiv. mis listed in
[Jadlovskd et al., 2009]. In addition to the evaehgymbolic motion equations in the “pretty” forail
physically significant steps of the derivation pss are displayed and can be tracked.

A

F my |

e e ,
> ' e .

>

Fig. 1 — Single and double inverted pendulum on aact — scheme and basic nomenclature

2.2 Single and Double Inverted Pendulum

By settingn to 1, we obtain a system ofsangle inverted pendulum (Fig. 1, left), which is
composed of a pendulum rod attached to the cag.efhi nvpenderi v(1) command was used to
obtain the model which consists of second-ordetinear differential equations that describe
the cart subsystem:

(my +m)Eo(1)+ o (1)+ i () cosay (1)~ 67(1)sing 1)) = F ) (14)
and the pendulum subsystem:
260+ 54,0)+ 5 mhiéycos8 1)~ mgl,singt) =0 (15

1 L ,
where J, = 3 m,|/ stands for the pendulum’s moment of inertia wéspect to the pivot.

Connecting a couple of rigid rods in a joint antheling one of these to a cart produces
a system of @ouble inverted pendulum (Fig. 1, right). Analogically to the single inved pendulum
systemeq=i nvpenderi v(2) returns the second-order nonlinear differentialagipns that describe
the cart subsystem:

e+ m B0+ 20+ 5t )oost )¢ singy )+

(16)
+2md,(6,0)cos,t) - ()sing 1)) = F 1)
the lower pendulum subsystem:
(‘]1 + mzllz)é’l(t) + (51 + 52)6’1(0 -0, (t) + [% mi, + mzlljéo(t)coagl(t) +
17)

L )codal)- )+ Esriat)- ) - 2m-+m Ja.snat) =0
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and the upper pendulum subsystem:

35(0)+ 56,0)- 6,0))+ 5 md At)eoss, 1)+ -
+2mi1{60)c0da)- 6.()- 2 0sina() - 6.0)- Smalsing, ) =0

1 1 N
where J; =§mllf, J, =§m2I22 stand for the moments of inertia of the lower apger pendulum

with respect to their pivot points.

The automatically generated nonlinear differengigiations were, in both cases, identical to
the equations derived manually (compare (15),(@$Roubal, 2002], [Schlegel et al., 2005], (17))(19
to [Bogdanov, 2004], [Demirci, 2004]), which comfis the validity of the algorithm. It is worth nagin
that the complete derivation procedure in the cdssedouble and triple inverted pendulum, as it was
included e.g. in [Schlegel et al., 2005], need mte been done. The general physical relationships
listed in 2.1 instead imply that once the singleeited pendulum model has been derived, all
energetic balances related to the cart and therlpemdulum of a double inverted pendulum system
are already known and only those which describeigper pendulum need to be computed.

3 LINEAR APPROXIMATION OF INVERTED PENDULA SYSTEMS

We will next focus on the analysis of inverted pa@ladsystems based on the state-space theory
of continuous dynamical systems, which describesrdinearSMO system with use of a differential
state equation and an algebraioutput equation:

x(t) = (x(t). u(t). t
y(®) =g(x(t) u(t).t)°
wherex(t) is the state vecto(t) is the scalar input valug(t) is the output vector.

Among the conclusions drawn from the analysis aboas that the order of a system of
inverted pendula on a cart 1+ 2. Therefore, a state vector in the following forrasaintroduced to
describe the system:

x(t)=(00) 60) =0a) %) - X)) (20)
and the force acting upon the cart was logicallyneée as the only input of the system:

ut) = F(t) (21)
The output equation is defined in such a way so that vectpt \Would either represent the vector of
generalized coordinateét), or the whole state vector (19), if necessary.determine thestate

(19)

equationx(t) = (6(t) 8(t))" . the Lagrange motion equations need above ak tiritten into the so-
called minimalODE form

M (B(E)() + N(o(). 6(0)6()+ Plo() = v 1) (22)

which makes it possible to isolate the derivatif/etate-space vector:

0(t)) o(t)
[é(t)J i [(M (o(t)) (v (t)-N(o(e).ot)o(t)+ p(e(t)))J (23)

in which every element di(t), 6(t) can be substituted by itgt) counterpart.

The fact that a nonlinear autonomous dynamic sy$i@smo tendency to change its state if in
equilibrium corresponds to equalities

x(t)=0andu(t)=ug =0 (24)
By solving these, we obtain the equilibrium points of the systenjE12,...,p):
jXs = (Xls Xos e X(2n+2)s)T (25)
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With use of the Taylor series, we can now creatditfear approximation to the whole state equation
by substitutingf; (x(t), u(t)) by f," (x(t),u(t)):

. 22 of, (x(t),u(t)) of, (x(t),u(t))
f x(t), ult)) = fi{xg,ug)+ — o X \t)— + ult)—u (26)
o) = el 3 BEIGY  lt-xa)+BEG )
For the case of the upright position, the equilibriis x(t) = xs =0" and sinceu(t) =ug =0,
and the state-space description of the physicalllizable linearized system is given as
x(t) = Ax(t) +bu(t)

y(t) = Cx(t)

The described transformation of the Lagrange madltieal model into a state-space matrix
form was implemented into MATLAB. Since the comptgxof symbolic matrices increases greatly
with increasing order of the system, only the stgt@ce matrices of the single inverted pendulum
model in the upright position, producedrdmt ri ces_si ngl e. m are displayed here as an example.

(27)

0 0 1 0 0
0 0 0 1 0
nolo _—3mg - 43, 65, 1y 4 (L 000 (28)
- dmy+m  Amp+m L(Ame+m) [T 7| 4mp+m “lo100
o Sam+m) 65  -125(m,+m) __ 6
L(amy +m) 1 (4m+m)  miZ(4m, +m) I, (4m, +m,)

Once again, the command window output of the fanctian be previewed in [Jadlovska et al., 2009].
The generated state-space matrices were provesldodurate (compare (28) to [Schlegel, 2005]).

4 IPMAC — INVERTED PENDULA MODELING AND CONTROL (SIMU LINK BLOCK
LIBRARY)

A structuredSmulink block library under the name briverted Pendula Modeling and Control
(IPMaC) was designed to provide software support forahalysis and synthesis of inverted pendula
systems. Thé&PMaC can be fully integrated into ti@mulink Library Browser and used identically to
the pre-installedSmulink block libraries. The following section providesbref insight into the
library’s functionality.

fi0 cart position

fil cart position
fi1 lower pole angle

fi1 pole angle fi2 upper pole angle

F external force on the cart F external force on the cart

dfid/dt cart velocity
dfiddt cart velocity

dfil/dt lower pole angular velocity
dfildt pole angular velocity

dfiz/dt upper pole veloci
Single Inverted Pendulum on a Cart PRECE ¥

Double Inverted Pendulum on a Cart

Fig. 2 — Simulink blocks of inverted pendula modelincluded in the IPMaC library

4.1 Open-Loop Dynamical Analysis

The mathematical models of a single and doubleriadependulum were implemented into
the programming environment of MATLABmulink in form of atomic library blocksSngle Inverted
Pendulum on aCart and Double Inverted Pendulum on a Cart; both with their own icon and
a dynamical parametric block mask. The block mdskagh implemented system makes it possible to
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change the system’s parameters, specify the ingbalditions (which enable the initial deflection
analysis), enable or disable the input force arjdsadhe number of outputs, which is equivalent to
equipping a real model with sensors. The blocksneves have a cell structure, i.e. each nonlinear
equation that is part of the system’s mathematitadel corresponds to a subsystem block
interconnected with the others with respect torthritual physical relations. As an illustrationg F8

and Fig. 4 depict the inner structure of subsystdatks Cart and Pendulum within the Single
Inverted Pendulum on a Cart block, both of which represent an exact transféionaof nonlinear
equations int&@mulink block diagrams.

3
s d2fiodt
T ds/m clen b - d .
dii 17dt das/dtz 2 dfi odt
d2fi/dt2 cossin (m1H11)2 i 5 | dfodt 1
oF [T
»- init (3)  Integrator < fio
init (1) Integrator 1

e e
dfi O/dit

delta 0

»( 3

d2fio/dt2

Fig. 3 — TheCart subsystem within the function block Single Invertd Pendulum on a Cart

d2fio/dt2 . I b
cos

m141)/2
cosine Dot Product ¢ )

function

. @fi1dt
sin a2ni1dt] dfi1dt

1
sine (m1*g*l1)2 131 e % s dfi1dt 1 i1
function N % s n @
init (4) Integrator 2 ~ il
- init(2)  Integrator 1
delta 1 I

»@D

dfi 1/dt

»@D

d2fi1/dt2

Fig. 4 — ThePendulum subsystem within the function block Single Invertd Pendulum on a Cart

Creating complete and functional simulation modelénverted pendula on a cart in form of
an atomic icon allows for detailed observation lefit dynamics with no additional modeling apart
from input/output block affiliation. The analyse§ the open-loop dynamical behavior of both the
single and double inverted pendulum system wertopeed as a response to a signal constrained in
terms of time and amplitude, included in tHeMaC as thelmpulse block. To view the signals
generated during simulatioigcope and Scope rad2deg blocks were used, the latter displaying the
signal in degrees rather than in radians. Bothreelsecan be run from tHgemo Smulations section
of thelPMaC, which is basically a collection of links to simtibn schemes whose purpose is to solve
various analysis- and synthesis-related problerme.sthemes are composed nearly exclusively of the
IPMaC blocks.

The dynamics of single inverted pendulum systemavesdyzed for two groups of parameters:

groupl: m, = 03kg, m, = 027%g, |, =05m, J, = 0.3kgs™", &, = 0.0114&gm*s™
groupll: my, =0.1kg, m, =1kg, |, =08m, J, = 0.3kgs ™", J, = 0.lkgm*s™
and the numeric values used in the double invgréediulum system simulation were:
m, = 03kg, m, = 027%g, m, = 027%g, |, =05m, |, =05m, J, = 0.3kgs™, J, = 0.lkgm?s™,
J, = 0.dkgm?s™
If we take a closer look at the simulation res@iR®. 5, Fig. 6), several conclusions can be
drawn independently of the number of pendula atddb a cart:
From the moment the cart starts to move as a nsgpto the time-constrained input force

impulse, its velocity decreases through time aradigally comes down to zero because of the present
friction. All pendula fall in counterdirection tdvé¢ cart (I Newton Law of inertia), passing through
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oscillatory transient state before finally stabiig themselves in the stable equilibrium point iniet
they are all pointing downward. The backward impactach pendulum on the cart, which increases
with the weight of the load attached, is also V&sibSince such open-loop behavior is correct
compared to generally known empirical observatiohpendula behavior, it can be concluded that
both models display acceptable overall performance.

Pole Angle [deg]

Cart Position m]

Position [m]

le Angle [deg]

can

Fig. 6 —Double I nverted Pendulum on a Cart — cart position, upper and lower pendula angles

4.2 Verification of State-Space Control Algorithms

The continuous linear feedback methods were emgldgedemonstrate the controllability
properties of the simulation model of single inedrpendulum. The control objective was to stabilize
the pendulum in the upright (inverted) i.e. unstapbsition, i.e. to maintain the equaﬁtg(t)on,
while the individual approached problems were:

« initial deflection of the pendulum (nonzero init@nditions)

e compensation of a time-constrained disturbancetisignal

« tracking a required position of the cart

or a combination of the three. The pendulum hdektiept upright in any case.

It is known (e.g. from [Jadlovska, 2009], [DemirdD04], [Jadlovska, 2003]) that if a
feedback gain k is applied on a measurable full state veot(lb, it brings the system to the origin of
the state space. A specified nonzero required ve(u)a requires an additionagetpoint gain k, . The
control law was therefore constructed in form & tbllowing sum:

ut)=u; (t)+u, (t)+d, (t) = kx(t) + k, wit) + d, (t) (29)
whereu; (t) = —kx(t) is the feedback component,(t) = k w(t) is the setpoint component aug (t)

is the unmeasured disturbance input. As such, dméral law is evaluated within th&ate Space
Controller (SSC) block from thelPMaC. The block’'s dynamic mask allows the user to pick
method to determine the feedback gain vdctahe pole-placement algorithm or the linear quadra
regulation LQR) optimal control method are available, both of ethiare supported bZontrol
Toolbox in form of built-in functions dcker/place, Igr). The nonzero setpoint inputv(t) and
disturbance inputju(t) may optionally be enabled or disabled so as tasadhe block’s appearance

to match the control objective.
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In case we suppose that measurement limitationg makpossible to retrieve the state space
vector as awhole, an estimator is included in tomtrol loop to provide the approximated
(reconstructed) state vectd«(t). The principle ofLuenberger state estimator lies in the gradual
minimization of the estimation errok(t)=x(t)-X(t). To keep the time behavior of the error
independent of system parameters, i.e. to maintain:

x(t)=(A-LC)x(t) (30)
where L is the estimator gain matrix, the estimator createnodel of the original system in the form:
x(t) = AR(t) + bu(t) + L (y(t) - cx(t)) (31)

which is the relation evaluated within tBate Estimator block. Once again, the block mask allows
the gain to be determined alternatively throughegmcement or linear quadratic control method,
according to the user’s choice.

State Estimator

]

n| X' = AX+Bu » Scope
y = Cx+Du

State-Space » l:l

Impulse

Step State Space Controller
Scope
rad 2deg

0 cart position

F extemal force on the cart

Signal Builder 1

State Space Controller 1

Scope
rad2deg 1

A4

i1 pole angle

Single Inverted Pendulum on a Cart

Fig. 7 — Examples of control simulation schemes

The example schemes above illustrate two waystefdannecting the blocks that result in a
control scheme for the single inverted penduluntesgs A simulation scheme of a linearized and a
nonlinear model is shown, with ti@ate Space Controller andSate Estimator blocks as part of both
schemes. The adjustment of the number of blocktinjmualso demonstrated. As was the case with
open-loop analysis, these schemes can be locatkdremo Smulations section of thePMaC.

Fig. 8 and Fig. 9 document the time-dependent bhehder both the cart position and the
pendulum angle of the nonlinear single inverteddpdumm system in case the control objective is to
maintain the desired cart position while keeping gendulum upright; no disturbance input was
considered. In order to use the linear methodg/thesis, the linearization of the nonlinear ingdrt
pendulum system was performed by callingrther i ces_si ngl e. mfunction. Using the parameters
fromgroup | (section 4.1), the following linear state-spacerioes were obtained:

o o0 1 0 0
iy 2|0 0 0 Ly | 0 |ig.(t 000 (32)

0 - 35575 - 05275 00604 | 17582 010 0

0 401024 15824 - 06813 - 52747
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In Fig. 8, the effect of seIectir(gS -2 -12+4 —12—4) for the designed poles of the system
is shown. The feedback gain vector of (-3.3704 175934 -3.1803 -26130 was computed
and applied on the system. Fig. 9 depicts the tesfl a LQR-based controller design. In the

minimized quadratic functiondl,, (t)=J-x(t)T Qx(t)+u; (t)Ru; (t)dt, both weighting matrices are
0

diagonal and chosen to lig= diag(500 0 20 O), R =1. The principle of separability allows the

feedback and estimator gains to be determined erdsnmtly of each other, i.e. using a different

method. Setting the estimation error matrix pole§-40 -41 -42 -43), which made them

about 10 times faster than the controller polesulted in the following estimator gain matrix:
(825 26 16775 1719)
|10 823 406 17078)

sition - Reference Trajectory (Pole Placement) Pole Angle Stabilization - Pole Placement

) I
—
D

Cart Position [m]
|
|
44}4<
l
-
|
|
|
|
|
|

Fig. 8 — Single Inverted Pendulum on a Cart — simatkion results for pole-placement control without
estimator (cart position, pendulum angle)

Pole Angle [deg]

|
ole

T

|

|

- T T

| |

| |

- T

| |
<

) ]

| |

| |

| T

| |

| |

Fig. 9 — Single Inverted Pendulum on a Cart — simakion results for LQR control with pole-placement-
designed estimator (cart position tracking, pendulm angle stabilization)

The simulation results reveal that both controlckéodo reasonably well. The ability of the
designed blocks to control the system with respecall above-presented requirements has been
demonstrated for both methods, although LQR comiratiuces slightly better results despite the need
for an estimator. Overally, the simulation resitstify the use of linear control methods to cohtro
nonlinear systems.

CONCLUSION

The purpose of this paper was to propose an ofiginaception of solving the task of
modeling and control of inverted pendula dynamgyaitems. It focused on demonstrating the analogy
which is found when we derive mathematical modetssiystems ofn inverted pendula on a cart for
a changingn. Practical importance of symbolic mathematicatwafe was pointed out &ymbolic
Math Toolbox was used in the process of development of gesgnalbolic procedures that either yield
the equations of motion of inverted pendula systentshence automatize the mathematical modeling,
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or perform the symbolic linear transformation ofecified nonlinear system. Such approach should
eliminate all factual or numeric errors that shoaide during the process of mathematical modeling.

The transformation of the derived equations of Isirand double inverted pendulum system
into Smulink block schemes was the basis of the creation afriad pendula simulation models
which were integrated in the’PMaC, a structuredamulink block library designed by the authors of
this paper. The core of the library is therefongresented by the dynamic-masked simulation models,
pre-prepared for use in open-loop analysis asagefitate-space controller design.

The IPMaC block library was introduced in [Jadlovska, 20@8H is going through constant
improvement process. Using the automatic mathealatimdel derivation, further expansion of the
modeling section should be straightforward. A secibn rotary inverted pendula, where the base is
moving in a plane rather than in a single coor@inet being designed to serve as software support f
a newly-purchased laboratory model of single rotavgrted pendulum. To enable further verification
of the controllability properties of inverted petalsystems, all included systems should also become
control plants. Finally, as it was hinted in [Jadiké et al., 2009], the release of the next versfdahe
IPMaC should contain a notably expanded control sectiena wider variety of controller blocks and
control schemes in addition to the already incluldediback control algorithms.

In summary, we believe that the idea of creatinfeamatic Simulink library, which would
group accurate simulation models of mechanicalesysttogether with useful input/output blocks,
suitable controller blocks and demonstration sitorhes, could find its use for a number of types of
dynamical systems. Libraries of hydraulic or eliealrsystems could follow the steps of tirMaC,
which we consider as a contribution to modeling emakrol education at technical universities.

ACKNOWLEDGEMENTS

This research was supported by Seeentific Grant Agency of Sovak Republic under the Vega project
Multiagent Network Control Systems with Automatic Reconfiguration (No.1/0617/08), as well as by
the Agency for the EU Structural Funds of the Ministry of Education of Sovak Republic under the
project: Centre of Information and Communication Technologies for Knowledge Systems (project
number: 26220120020).

REFERENCES

JADLOVSKA, S. 2009Inverted Pendula Modeling and Control [in Sovak]. Bachelor thesis. Kosice:
FEI TU KoSice, 64 p.

JADLOVSKA, S.; JADLOVSKA, A. 2009. A Simulink Libry for Inverted Pendula Modeling and
Simulation. In:17th Annual Conference Proceedings of the International Scientific Conference -
Technical Computing Prague, November 19, 2009. [CD-ROM]

SULTAN, K. 2004. Inverted Pendulum, Analysis, Desigand Implementation, from
http: //www.mathwor ks.comymatlabcentr al /fileexchange/3790, cit. 1-8-2009

ROUBAL, J. 2002.Nonlinear Pendulum Control [in Czech]. Diploma thesis. Prague: Faculty of
Electrical Engineering,. Czech Technical UnivergityPrague

SCHLEGEL, M.; MEFANEK, J. 2007. Limitations on the Inverted PendBabilizability
According to Sensor Placement. Proceedings of the 16th International Conference on Process
Control, Strbské Pleso, June 11-14, 2007. [CD-ROM]

BOGDANOYV, A. 2004. Optimal Control of a Double Imted Pendulum on the Cart. Technical
Report CSE-04-006, OGI School of Science and Ereging, OHSU

DEMIRCI, M. 2004. Design of Feedback Controllers # Linear System with Applications to
Control of a Double-Inverted Pendulurmternational Journal of Computational Cognition, Vol.

2, No. 1, p. 65-84

JADLOVSKA, A. 2003.Modeling and Control of Dynamic Processes Using Neural Networks [in

Sovak]. KoSice: Edition of Scientific Documents, FEI Tldformatech

Cl3a-11



