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ABSTRACT 

The paper is focused on modelling and behaviour prediction of physical systems by feedforward neural networks. Different 

structures for multilayer perceptron networks training on the basis of measured data of modelled physical system are mentioned in 

this paper. Neural networks trained as an  input-output ARX and ARMAX model and a state-space model of dynamic system are used 

in a physical system behaviour prediction. A verification of successful neural networks training for prediction purpose is carried out 

by comparing with a simulation model of chosen physical system, which was created by analytic identification. Results of neural 

network output comparison with nonlinear simulation model are presented in the form of time responses. The main goal of this paper 

is to mention the possibility of using neural networks as physical systems dynamics predictors and thus avoid the necessity of 

mathematical model creation, e.g. in nonlinear differential equations form. 
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1. INTRODUCTION 

We are engaged in nonlinear dynamic system 

modelling by feedforward neural networks in this paper. 

The main goal is to mention the possibility of using the 

neural network as predictors of modelled system’s 

dynamics and thus avoid the necessity of using the 

analytic identification. 

However, for verification of training algorithms 

functionality we used the laboratory hydraulic system as 

modelled system, concretely its mathematical model 

represented by nonlinear differential equations. A 

derivation of mathematical model on the basis of physical 

principles was introduced in [1] and [2]. In this paper we 

target the training data obtaining from simulation 

hydraulic system model and in consequence the neural 

networks training as ARX, ARMAX and state-space 

model of nonlinear dynamic system according to [3].  

After successful training we will use neural networks 

as modelled system behaviour predictor. Particular results 

we will compare with time responses obtained by 

numerical solution of nonlinear differential equations by 

Runge-Kutta method. In such a way we will check up the 

possibility to get the predictor of dynamic system on the 

basis of measured data without necessity to know exact 

mathematical model. 

2. NONLINEAR MODEL OF HYDRAULIC 

SYSTEM 

A schematic illustration of hydraulic system is depicted 

in Fig. 1, whereby particular physical parameters are: 

S - intersection of tanks, 

Sv1, Sv2 - intersection of outlets of both tanks, 

hmax - height of tanks (maximal liquid level). 

Physical quantities shown in Fig. 1 are: 

fm(t) - pump’s motor frequency, 

h1(t), h2(t) - current levels of liquid in both tanks. 

Sensors, which scan the current liquid level in both 

tanks are marked as Sn1 and Sn2. 

 

Fig. 1 The hydraulic system of two tanks 

The systemic view of introduced hydraulic system is 

depicted in Fig.2, where besides already mentioned 

quantities, qin1(t) and qin2(t) is inflow to the first and the 

second tank. 

 

 

Fig. 2 The systemic view of hydraulic system 

It is possible to derive nonlinear differential equations 

(1), which describe the hydraulic system dynamics by 

analytic identification on the basis of known physical 

principles: 
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whereby g is the acceleration of gravity. The pump 

constant kp, which describes a linear relationship between 

input voltage U(t) and inflow into the first tank qin1(t), was 

obtained by experimental measuring. 

On the basis of nonlinear differential equations (1) we 

created a simulation model, which is depicted on Fig. 3. In 

our case this model constitutes the modelled system, 

whose outputs we will use for preparing training and 

testing data. 

 

Fig. 3  Nonlinear simulation model of hydraulic system 

3. USED NEURAL NETWORK MODELS 

In this part three different approaches to feedforward 

neural networks training on the basis of measured data 

from modelled system are introduced. We are concerning 

the multilayer perceptron network (MLP) with one hidden 

layer, which structure is depicted on Fig. 4, whereby 

number of neurons on input and output layer is given by 

number of network’s inputs and outputs. Number of 

neurons on hidden layer is an adjustable parameter [4]. 

 
Fig. 4  MLP network: 4 inputs, 2 hidden units, 1 output 

According to [3] the output value outi can be computed 

by equation 
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is the k-th input, wj,k is the weight between 

particular input and neuron on hidden layer, Wi,j is the 

weight between hidden layer output and output neuron 

and outi is the i-th output. Symbols wj0 and Wi0 are weights 

of external inputs, which are called bias and have value 1. 

Functions Fi and fj constitute activation functions, in our 

case it is liner and hyperbolic tangent function. 

According to [5] after integrating biases into vector of 

network’s inputs in it is possible to express vector of 

network’s outputs out in matrix form:  

 { ( )}  out F W f w in  (3) 

where w and W are matrices of weights and f and F are 

vector functions. Next we will present used structures of 

neural networks, which we trained on the basis of 

nonlinear hydraulic system model time responses. 

3.1. Neural ARX model 

The input-output ARX model, which describes 

physical systems dynamics in linear form can be written 

as 

 1 1( ) ( ) ( ) ( ) ( )z zA z y k B z u k k    (4) 

where Az(z
-1

), Bz(z
-1

) are polynomials, u(k) is input, y(k) is 

output of dynamic system and (k) is output error or 

measuring noise [6]. 

According to [3] the neural network, which shapes ARX 

model has structure, which is shown on Fig. 5.  

 

Fig. 5  Neural network of ARX model 

Inputs of neural network as ARX model (NNARX) are 

constituted by values of modelled system input and output 

quantity in m and n previous samples, whereby d is system 

delay. In our case d = 0. Network’s output is predicted 

value of system output ŷ(k). 

3.2. Neural ARMAX model 

The input-output ARMAX model has form  

1 1 1( ) ( ) ( ) ( ) ( ) ( )z z zA z y k B z u k C z k     (5) 
 

 

where in addition to ARX model there is also polynomial 

Cz(z
-1

) [7]. 

On Fig. 6 structure of neural network, which shapes 

the ARMAX model according to [3] is shown. Opposite to 

the NNARX the NNARMAX model has inputs, which are 

given as a deviation between actual outputs and outputs 

computed by equation (3) in s previous samples. 

 

Fig. 6  Neural network of ARMAX model 
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3.3. Neural SSIF model 

State-space model of physical systems has form 

( 1) ( ) ( )

     ( )   ( )

k k k

k k

  



d d
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y Cx
 (6) 

where Ad is matrix of dynamics, Bd is matrix of inputs, C 

is matrix of outputs, x(k) is vector of state quantities, u(k) 

is vector of inputs and y(k) is vector of system outputs. 

The structure of neural network representing the state-

space innovations form model is shown on Fig. 7.  

 

Fig. 7  Neural network of SSIF model 

Unlike two previous neural models the NNSSIF model 

uses information about state quantities of modelled 

system. 

4. TRAINING OF NEURAL NETWORKS 

We carried out the training of introduced neural 

networks on the basis of the flow chart depicted on Fig. 8 

by Neural Network Toolbox functions.  

 

Fig. 8  Flow chart of neural network training 

Neural networks structures, which we used in 

Hydraulic system modelling are written in Tab. 1. We 

obtained the best results with these settings for particular 

neural models. 
Tab. 1 Structures of neural models 

Number of NNARX NNARMAX NNSSIF 

inputs 
6 

m=2, n=3 

9 

m=2, n=s=3 

4 

2 elements 

in x 

neurons on 

hidden layer 
10 20 5 

outputs 1 1 2 

As training data we used time responses obtained from 

the analytic model of Hydraulic system by numeric 

solving of nonlinear differential equations (1). Training 

data are depicted on Fig. 9. 
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Fig. 9  Training data from Hydraulic system 

The concrete values of weighing coefficients for 

particular neural model are  result of training phase. Due 

to more flexibility and less complexity we designed 

structure, which we filled with necessary data about neural 

model obtained by Neural Network Toolbox, for example 

norming coefficients, weights between particular neurons 

and so on. We will use the structure NET in modelled 

system behaviour prediction computing. 

5. VERIFICATION OF NEURAL NETWORKS 

We carried out neural networks testing in two ways. 

Firstly, we applied another data obtained by simulation of 

nonlinear analytic model (Fig. 10) into neural network’s 

inputs. We compared the neural network output with 

analytic model’s output. Time responses of neural 

network output was the same as testing data. From that 

reason we don’t present them in this paper. In such 

comparison we verified that neural network training was 

successful. 
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We verified the suitability of trained neural network 

for physical system behaviour prediction purpose in such 

way, that we applied testing data into the neural network 

inputs, which represent dynamic system input u(k) and for 

next network’s inputs (representing the dynamic system 

output y(k) in n previous samples) we fed back neural 

network’s output. Again, we compared obtained results 

with time responses computed on the basis of physical 

system’s analytic model. This comparison is depicted on 

Fig. 11. 
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Fig. 10  Testing data from Hydraulic system 
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Fig. 11  Analytic model with neural network output comparison 

It is clear from Fig. 11, that all of introduced neural 

models adequately approximate the dynamics of nonlinear 

Hydraulic system. However, the NNARX model returns a 

gentle deviation at the edge of system operating area. 

The neural models outputs comparison with output of 

nonlinear analytic model of Hydraulic system is depicted 

on Fig. 12. The constant value uc = 4V was used as input. 

The NNSSIF model seems to be the best choice for 

nonlinear systems approximating or behaviour prediction. 

We suppose that is induced by the fact, that time 

responses of state quantities constitute training data 

instead of system outputs. At the same time, the NNSSIF 

model has only 5 neurons on hidden layer, so the training 

of this neural model is faster than training of NNARMAX 

model, which was not able to model the dynamics of 

Hydraulic system adequately with the same structure. 
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Fig. 12  Analytic model with neural network output 

comparison – constant input 

6. CONCLUSIONS 

We introduced the possibility to train feedforward 

neural networks for physical systems dynamics prediction 

in this paper. On the basis of results presented in part 5 we 

can conclude that neural networks with one hidden layer 

are really suitable for approximating the nonlinear systems 

dynamics and they can be used as predictors of physical 

systems behaviour. NNARMAX and NNSSIF models are 

more suitable, which is clear from neural networks outputs 

comparison with analytic model’s output. It is caused 

mainly by their structure, forasmuch as the prediction 

error is applied as neural network’s input during training. 

The advantage of NNSSIF model is also that it allows to 

predict state quantities values of modelled system.    

We want to use every mentioned neural model as 

controlled system predictor and implement it to predictive 

control algorithms, whether on the base of input-output or 

state-space descriptions. In the frame of predictive control 

algorithms we want to use these neural models for 

controlled system free response prediction computing. We 

expect better control process, mainly because neural 

models are able to predict a nonlinear character of 

controlled systems better than classical ARX, CARIMA 

or state-space models. 
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